Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Alaskan soil thaw sends carbon directly back into atmosphere

27.10.2015

Samples of permafrost soil from deep below the ground in an Alaskan tunnel are providing new clues in the quest to understand what exactly happens as northern regions of the world warm and begin to thaw.

FSU doctoral student Travis Drake and Florida State University Assistant Professor in Earth, Ocean and Atmospheric Sciences Robert Spencer write in a new paper that permafrost organic material is so biodegradable that as soon as it thaws, the carbon is almost immediately consumed by single-cell organisms called microbes and then released back into the air as carbon dioxide, feeding the global climate cycle. Their findings are laid out in an article published today by the Proceedings of National Academy of Sciences.


Researchers, including Assistant Professor Robert Spencer, collected samples of permafrost in tunnels operated by the US Army Corps of Engineers.

Courtesy of Travis Drake

This is the first time scientists were able to quantify exactly how fast organic carbon from Alaskan permafrost is converted into carbon dioxide.

"This study really shows what makes permafrost so biodegradable," said Drake, who completed the work while still an employee at the U.S. Geological Survey and master's degree student at University of Colorado.

"Immediately upon thaw, microbes start using the carbon and then it is sent back into the atmosphere."

The permafrost examined in the study contained carbon that was 35,000 years old and had been stored frozen out of the carbon cycle until thawed. After 200 hours of thawing, almost half of it was gone, consumed by microbes and released back into the air as carbon dioxide.

"It's like feeding them chocolate," Spencer said. "You are giving them a food source that they really enjoy and is high in energy."

The results are troubling, of course, because increased carbon dioxide levels cause the Earth to warm and precipitate more thawing of permafrost.

Additionally, Alaskan permafrost contains one of the largest carbon stores in the world, and scientists have yet to totally understand what will happen to the air and water if vast amounts are released into it courtesy of thawing processes.

Researchers conducted most of the work in tunnels close to Fairbanks operated by the U.S. Army Corps of Engineers and collected samples of permafrost from the icy walls as new tunnels were excavated.

The team which includes scientists from the U.S. Geological Survey and the University of Colorado plans a follow-up study to examine what happens in between the time the soil initially starts to thaw and the carbon is consumed by the microbes.

###

In addition to Spencer and Drake, other researchers on the project were Kim Wickland and Rob Striegl of the U.S. Geological Survey and Diane McKnight of University of Colorado Boulder. Drake first met Spencer while he was a student at University of Colorado conducting fieldwork in Siberia and then opted to come to FSU to study under Spencer for his doctorate.

The research was funded by the U.S. Geological Survey and the National Science Foundation.

Media Contact

Kathleen Haughney
khaughney@fsu.edu
850-644-1489

 @floridastate

http://www.fsu.edu 

Kathleen Haughney | EurekAlert!

More articles from Earth Sciences:

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Shallow soils promote savannas in South America
20.10.2017 | Senckenberg Forschungsinstitut und Naturmuseen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>