Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Airborne radar surveys and data-based models indicate West Antarctic Ice Sheet collapse is underway

13.05.2014

Discovery is latest outcome of NSF-funded International Polar Year Research

National Science Foundation- (NSF) funded researchers at the University of Washington have concluded that Antarctica's fast-moving Thwaites Glacier will likely disappear in a matter of centuries, potentially raising sea level by more than a half-a-meter (two feet).


A high-resolution map of the Thwaites Glacier's thinning ice shelf. The glacier now appears to be in the early stages of collapse, with full collapse potentially occurring within a few centuries.

Credit: David Shean / University of Washington

Data gathered by NSF-funded airborne radar, detailed topography maps and computer modeling were used to make the determination.

The glacier acts as an ice dam, stabilizing and regulating movement toward the sea of the massive West Antarctic Ice Sheet. The ice sheet contains enough ice to cause another 3 to 4 meters (10 to 13 feet) of global sea level rise.

"There's been a lot of speculation about the stability of marine ice sheets, and many scientists suspected that this kind of behavior is under way," said Ian Joughin, a glaciologist at the university's Applied Physics Laboratory (APL) and the first author on the paper. " This study provides a more quantitative idea of the rates at which the [ice sheet] collapse could take place."

The paper's co-authors are Benjamin Smith, a physicist at APL, and Brooke Medley, a former University of Washington doctoral student, now at NASA's Goddard Space Flight Center.

While the word "collapse" implies a sudden change, the fastest scenario based on the data, the researchers said, is 200 years, and the longest is more than 1,000 years.

The findings are published in the May 16 edition of the journal Science.

The new discovery is among a series of significant findings that derive from research funded by NSF during the International Polar Year (IPY) 2007-2009, during which scientists from more than 60 nations focused their efforts on research in the Arctic and Antarctic. NSF was the lead U.S. agency for the IPY

The research was funded by two NSF grants: one awarded to the Center for the Remote Sensing of Ice Sheets (CReSIS) at the University of Kansas; the other, a collaborative IPY grant, Constraining the Mass-Balance Deficit of the Amundsen Coast's Glaciers, to Joughin and his colleagues.

NASA also supported the research through grant NNX09AE47G.

The new study used airborne radar, developed by CReSIS to peer down through the thick ice and map the topography of the underlying bedrock. The shape of the underlying bedrock controls the ice sheet's long-term stability. The mapping was done as part of NASA's Operation IceBridge, a series of overflights of the ice by a P-3 research aircraft, and included other instruments to measure the height of the ice sheet's rapidly thinning surface. In some places Thwaites Glacier has been losing tens of feet, or several meters, of elevation per year.

While the timescales for a collapse of the ice sheet are in question, such a collapse may be inevitable, the researchers said.

"Previously, when we saw thinning we didn't necessarily know whether the glacier could slow down later, spontaneously or through some feedback," Joughin said. "In our model simulations it looks like all the feedbacks tend to point toward it actually accelerating over time; there's no real stabilizing mechanism we can see."

Earlier warnings of collapse had been based on a simplified model of ice sitting in an inward-sloping basin. The topography around Antarctica, however, is complex.

The researchers combined the IceBridge and CReSIS data with their own satellite measurements of ice-surface speeds. Their computer model was able to reproduce the glacier's ice loss during the past 18 years, and they ran the model forward under different amounts of ocean-driven melting.

The place where the glacier meets land, the grounding line, now sits on a shallow ridge at a depth of about 600 meters (2,000 feet) below asea level. Results show that as the ice edge retreats into the deeper part of the bay, the ice face will become steeper and, like a towering pile of sand, the fluid glacier will become less stable and collapse out toward the sea.

"Once it really gets past this shallow part, it's going to start to lose ice very rapidly," Joughin said.

The study considered future scenarios using faster or slower melt rates depending on the amount of future warming. The fastest melt rate led to the early stages lasting 200 years, after which the rapid-stage collapse began. The slowest melt rate kept most of the ice for more than a millennium before the onset of rapid collapse. The most likely scenarios may be between 200 and 500 years, Joughin said.

"All of our simulations show it will retreat at less than a millimeter of sea level rise per year for a couple of hundred years, and then, boom, it just starts to really go," Joughin said.

Researchers did not model the more chaotic rapid collapse, but the remaining ice is expected to disappear within a few decades.

-NSF-

Media Contacts Peter West, NSF, (703) 292-7530, pwest@nsf.gov Hannah Hickey, University of Washington, (206) 543.2580, hickeyh@uw.edu

Program Contacts Julie M. Palais, NSF, (703) 292-8033, jpalais@nsf.gov

Principal Investigators Ian Joughin, University of Washington, (206) 221-3177, ian@apl.washington.edu

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2014, its budget is $7.2 billion. NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and other institutions. Each year, NSF receives about 50,000 competitive requests for funding, and makes about 11,500 new funding awards. NSF also awards about $593 million in professional and service contracts yearly.

Peter West | Eurek Alert!
Further information:
http://nsf.gov/news/news_summ.jsp?cntn_id=131369&org=NSF&from=news

Further reports about: Antarctic Arctic Glacier IPY NSF Thwaites Glacier area grants

More articles from Earth Sciences:

nachricht Less radiation in inner Van Allen belt than previously believed
21.03.2017 | DOE/Los Alamos National Laboratory

nachricht Mars volcano, Earth's dinosaurs went extinct about the same time
21.03.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>