Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Air quality has continued to improve in Finnish Lapland

21.09.2011
Climate change may still increase the pollution load

Trends in the concentrations of nearly sixty atmospheric pollutants have been studied using the data collected in Finland at the Pallas-Sodankylä Observatory from 1996 to 2009. Concentrations of pollutants in Lapland are very low, typically about one tenth of the background concentrations in Southern Finland. Many of the concentrations studied remained unchanged over the long term and nearly half showed a decreasing trend.

Lower concentrations were measured for many pollutants hazardous to ecosystems and humans, such as sulphur dioxide, heavy metals and some polyaromatic hydrocarbons transported from the Kola Peninsula. Long-range transports of sulphates and stable organic compounds have also been decreasing in Pallas. With respect to pollutants from transport (nitrogen compounds, volatile hydrocarbons and ozone), however, the situation remained more or less unchanged.

Climate change affects the dispersion of pollutants

Using results from nine climate models, the project assessed how the transport of pollutants might evolve in the future. It is predicted that, with global warming, southwestern and western winds will become more common, while eastern winds will become rarer. In consequence, concentrations of pollutants carried by southwestern air currents will rise in Lapland. This group includes, for instance, nitrogen dioxide from transport. On the other hand, less pollution, such as sulphur dioxide and black carbon, will reach Lapland from the east. However, according to forecasts obtained with climate models, the changes in wind directions are so slight that the resulting changes in concentrations will be at most a couple of per cent by the year 2100.

Indirect impacts the most important

In consequence of climate change, the pollution loads in northern regions may increase because of growing emissions. By 2050, the Arctic Ocean may be totally free of ice in summer. Should this be the case, increasing ship traffic may cause pollution levels in Lapland to rise as well. The global efforts currently in progress to limit sulphur emissions from marine transport will probably prevent sulphur emissions from rising, but in the worst of cases the concentrations of nitrogen oxides and particles may double from the present level.

Research findings will be presented to the authorities at a seminar to be held in Muonio on 21 and 22 September. The study is a part of the project "Vulnerability Assessment of Ecosystem Services for Climate Change Impacts and Adaptation (VACCIA)" coordinated by the Finnish Environment Institute.

Additional information:

Air quality trends:
Pia Anttila, Research Scientist, Finnish Meteorological Institute, tel. (09) 1929 5410, pia.anttila@fmi.fi

Hannele Hakola, Head of Group, Finnish Meteorological Institute, tel. (09) 1929 5512, hannele.hakola@fmi.fi

Climate change:
Kimmo Ruosteenoja, Research Scientist, Finnish Meteorological Institute, tel. (09) 1929 4128, kimmo.ruosteenoja@fmi.fi

Pia Anttila | EurekAlert!
Further information:
http://www.fmi.fi

More articles from Earth Sciences:

nachricht Monitoring lava lake levels in Congo volcano
16.05.2018 | Seismological Society of America

nachricht Ice stream draining Greenland Ice Sheet sensitive to changes over past 45,000 years
14.05.2018 | Oregon State University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>