Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Air pollutions control policies effective in improving downwind air quality

09.12.2015

Emissions controls on coal-fired power plants are making a difference in reducing exposure of mercury to people, especially in the western Maryland community. A study of air quality from the University of Maryland Center for Environmental Science found that levels of mercury in the air from power plant emissions dropped more than half over a 10-year period, coinciding with stricter pollution controls.

"I was surprised when I first saw it," said the study's author Mark Castro, associate professor with the University of Maryland Center for Environmental Science's Appalachian Laboratory in Frostburg. "We've been measuring mercury for years. To see such a dramatic drop was exciting."


Emissions controls on coal-fired power plants are making a difference in reducing exposure of mercury to people.

Credit: University of Maryland Center for Environmental Science/Cheryl Nemazie

From 2006 to 2014, researchers monitored the atmospheric concentrations of mercury at a relatively pristine location in western Maryland that was also downwind from several power plants in Ohio, Pennsylvania, and West Virginia. The annual average concentrations of mercury declined by up to 75% and were strongly correlated with the power plant emissions from the upwind states.

Mercury is a serious threat to human health throughout the world. Many people, particularly pregnant women and their fetuses, and young children, are highly susceptible to the neurological effects. Important sources of mercury in the United States have been power plants and waste incinerators. Some regions in the U.S., particularly those downwind of large sources of mercury, receive 60-80% of their atmospheric mercury deposition from these man-made sources.

In 2005, the EPA issued the Clean Air Mercury Rule (CAMR) to reduce mercury emissions from power plants, and in 2011, the EPA issued the Mercury and Air Toxic Standards (MATS) to reduce mercury emissions by 90% upon full compliance in April 2016. (Note: Recently, the US Supreme Court ruled that MATS needs to be reexamined by the D.C. Circuit Court.)

Maryland, with one of the most aggressive power plant control programs in the nation, has in place regulations such as the Healthy Air Act that require significant reductions in mercury from coal burning power plants. The Healthy Air Act required an 80 percent reduction in mercury in 2010 and a 90 percent reduction by 2013.

The purpose of the study was to determine if power plant emission reductions have affected the atmospheric concentrations of mercury entering western Maryland before being transported to population centers further east by prevailing westerly winds. Measurements were made that the Piney Reservoir Air Monitoring Station in Garrett County, Maryland, a spot surrounded by forest and farm land, where winds arrive commonly from the west and northwest.

"Our site is located downwind from three states that are top mercury emitters," said Castro. "We are in a hot spot to be impacted by regional emissions. If those emissions change, we are in a good spot to see it."

Models predicted that power plant emissions from the state of Ohio, Pennsylvania, and West Virginia contributed up to 50% of the mercury that was deposited in Maryland from these states. The reductions in emissions could be seen in the frequency and maximum concentrations of the short-term episodic events of emissions, and the annual average concentrations.

There was a statistically significant decrease in the annual average concentrations from 2006 to 2013 and a strong correlation with annual power plant mercury emissions from the upwind states of Ohio, Pennsylvania and West Virginia. This was a relatively large reduction and strongly suggested the emissions reduction strategies of CAIR and MATS were very effective at reducing the concentration of mercury in western Maryland. Full compliance with MATS, which includes a 90% reduction in power plant mercury emissions, is expected to lower concentrations even further.

The paper, "Effectiveness of Emission Controls to Reduce the Atmospheric Concentration of Mercury," was published by Mark Castro of the University of Maryland Center for Environmental Science's Appalachian Laboratory and John Sherwell of the Maryland Department of Natural Resources' Power Plant Research Program. It was published in Environmental Science & Technology.

###

This project was funded by the Maryland Department of Natural Resources and the U.S. EPA's Clear Air Markets Program.

UNIVERSITY OF MARYLAND CENTER FOR ENVIRONMENTAL SCIENCE

For 90 years, the University of Maryland Center for Environmental Science has led the way toward better management of Maryland's natural resources and the protection and restoration of the Chesapeake Bay. From a network laboratories located across the state, UMCES scientists provide sound advice to help state and national leaders manage the environment, and prepare future scientists to meet the global challenges of the 21st century. http://www.umces.edu

Media Contact

Amy Pelsinsky
apelsinsky@umces.edu
410-330-1389

 @umces

http://www.umces.edu 

Amy Pelsinsky | EurekAlert!

More articles from Earth Sciences:

nachricht Arctic melt ponds form when meltwater clogs ice pores
24.01.2017 | University of Utah

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>