Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Age of blueschist is not an indicator of the date of emergence of plate tectonics

15.12.2015

Formation of blueschist is determined by changes to the chemical composition of oceanic crust

One of the big mysteries in the history of the Earth is the emergence of plate tectonics. When exactly did the processes of plate tectonics begin that today involve the subduction of oceanic plates? Scientific opinion varies widely as to this.


A typical blueschist rock: Blueschist is named for its blue-violet color that is due to the presence of the mineral glaucophane; the green mineral in the rock is called epidote.

photo/©: Richard White


A typical greenschist rock: Greenschist takes its name from the actinolite and chlorite minerals it contains; also present are quartz and epidote.

photo/©: Richard White

The dominant view is that oceanic plates have been pushing under other plates and sinking into the Earth's mantle – a process known as subduction – since the beginning of the Hadean eon, more than four billion years ago. Others date the onset of plate tectonic movements to the Neoproterozoic era of 500 to 1,000 million years ago.

This hypothesis is based on the fact that the rock called blueschist began to appear 700 to 800 million years ago. Geoscientists at Johannes Gutenberg University Mainz (JGU) in Germany have now shown that the appearance of blueschist is connected to long-term changes in the composition of the oceanic crust and therefore does not provide evidence of when plate tectonics began. The study has been published in the eminent journal Nature Geoscience.

Blueschist is a blue-violet colored rock that is relatively rare and is found, among other places, in the Alps, in Japan, and on the west coast of the USA. The oldest blueschist found originated in the Neoproterozoic era and is 700 to 800 million years old.

This metavolcanic rock is created during the subduction of oceanic crust. Required for its formation are high pressure and relatively low temperatures of 200 to 500 degrees Celsius. As such conditions have only prevailed in subduction zones in the recent past, blueschist provides evidence of when subduction-driven plate tectonics occurred. The reason why there was no blueschist present on Earth during its first 3.8 billion years is a hotly contested topic among geologists.

"We know that the formation of blueschist is definitely linked to subduction," explained Professor Richard White of the Institute of Geosciences at Mainz University. "The fact that the oldest blueschist is only 700 to 800 million years old does not mean, however, that there were no subduction processes before then, as is sometimes claimed," added Dr. Richard Palin.

In their study, the two researchers have now managed to demonstrate for the first time that the absence of blueschist in the earliest geological periods goes back to a change in the chemical composition of the ocean's crust in the course of the Earth's history, which in turn is a result of the gradual cooling of the Earth's mantle since the Archean eon.

The oceanic crust that formed on the early, hot Earth was rich in magnesium oxide. Using computer models, Palin and White have been able to show that it was not possible for blueschist to form from this magnesium oxide-rich rock during subduction. Instead, the subduction of the magnesium oxide-rich oceanic crust led to the formation of rock similar to greenschist, which is a metamorphic rock that is formed today at low temperatures and low pressure.

Since these greenschist rocks can hold more water than most blueschist, more fluid was able to enter the early Earth's mantle than today, a factor that has an effect on the formation of magmas, which is one of the topics being studied by the Volcanoes and Atmosphere in Magmatic Open Systems (VAMOS) research unit at Johannes Gutenberg University Mainz.

Publication:
Richard M. Palin, Richard W. White
Emergence of blueschists on Earth linked to secular changes in oceanic crust composition
Nature Geoscience, 14 November 2015
DOI: 10.1038/NGEO2605

Further information:
Professor Dr. Richard White
Head of the Metamorphic Geology work group
Institute of Geosciences
Johannes Gutenberg University Mainz
D 55099 Mainz, GERMANY
phone: +49 6131 39-24781
fax: +49 6131 39-23071
e-mail: rwhite@uni-mainz.de
http://www.geowiss.uni-mainz.de/840_ENG_HTML.php

Weitere Informationen:

http://www.nature.com/ngeo/journal/vaop/ncurrent/full/ngeo2605.html - link to the Nature Geosciences article ;
http://www.geowiss.uni-mainz.de/index_ENG.php - Institute of Geosciences at Johannes Gutenberg University Mainz ;
http://www.geowiss.uni-mainz.de/482_ENG_HTML.php - Metamorphic Geology work Group ;
http://www.vamos.uni-mainz.de/ – Research Unit on Volcanoes and Atmosphere in Magmatic Open Systems (VAMOS)

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

Quantum optical sensor for the first time tested in space – with a laser system from Berlin

23.01.2017 | Physics and Astronomy

The interactome of infected neural cells reveals new therapeutic targets for Zika

23.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>