Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Against the current with lava flows

12.05.2014

Primeval lava flows formed the massive canyons and gorge systems on Mars. Water, by contrast, was far too scarce on the red planet to have cut these gigantic valleys into the landscape. This is the conclusion of several years of study by ETH geoscientist Giovanni Leone.

An Italian astronomer in the 19th century first described them as ‘canali’ – on Mars’ equatorial region, a conspicuous net-like system of deep gorges known as the Noctis Labyrinthus is clearly visible. The gorge system, in turn, leads into another massive canyon, the Valles Marineris, which is 4,000 km long, 200 km wide and 7 km deep. Both of these together would span the US completely from east to west.


The gigantic gorge system Noctis Labyrinthus and Valles Marineris were created exclusively through the erosive force of immense lava flows. (Image: google.com/mars)

As these gorges, when observed from orbit, resemble terrestrial canyons formed by water, most researchers assumed that immense flows of water must have carved the Noctis Labyrinthus and the Valles Marineris into the surface of Mars. Another possibility was that tectonic activity had created the largest rift valley on a planet in our solar system.

Lava flows caused the gorges

These assumptions were far from the mark, says Giovanni Leone, a specialist in planetary volcanism in the research group of ETH professor Paul Tackley. Only lava flows would have had the force and mass required to carve these gigantic gorges into the surface of Mars. The study was recently published in the Journal of Volcanology and Geothermal Research.

... more about:
»Lava »Marineris »Mars »Source »canyons »formation

In recent years, Leone has examined intensively the structure of these canyons and their outlets into the Ares Vallis and the Chryse Planitia, a massive plain on Mars’ low northern latitude. He examined thousands of high-resolution surface images taken by numerous Mars probes, including the latest from the Mars Reconnaissance Orbiter, and which are available on the image databases of the US Geological Survey.

No discernible evidence of erosion by water

His conclusion is unequivocal: “Everything that I observed on those images were structures of lava flows as we know them on Earth,” he emphasises. "The typical indicators of erosion by water were not visible on any of them.” Leone therefore does not completely rules out water as final formative force. Evidence of water, such as salt deposits in locations where water evaporated from the ground or signs of erosion on the alluvial fans of the landslides, are scarce but still existing. “One must therefore ask oneself seriously how Valles Marineris could have been created by water if one can not find any massive and widespread evidence of it.” The Italian volcanologist similarly could find no explanation as to where the massive amounts of water that would be required to form such canyons might have originated.

Source region of lava flows identified

The explanatory model presented by Leone in his study illustrates the formation history from the source to the outlet of the gorge system. He identifies the volcanic region of Tharsis as the source region of the lava flows and from there initial lava tubes stretched to the edge of the Noctis Labyrinthus. When the pressure from an eruption subsided, some of the tube ceilings collapsed, leading to the formation of a chain of almost circular holes, the ‘pit chains’.

When lava flowed again through the tubes, the ceilings collapsed entirely, forming deep V-shaped troughs. Due to the melting of ground and rim material, and through mechanical erosion, the mass of lava carved an ever-deeper and broader bed to form canyons. The destabilised rims then slipped and subsequent lava flows carried away the debris from the landslides or covered it. “The more lava that flowed, the wider the canyon became,” says Leone.

Leone supported his explanatory model with height measurements from various Mars probes. The valleys of the Noctis Labyrinthus manifest the typical V-shape of ‘young’ lava valleys where the tube ceilings have completely collapsed. The upper rims of these valleys, however, have the same height. If tectonic forces had been at work, they would not be on the same level, he says. The notion of water as the formative force, in turn, is undermined by the fact that it would have taken tens of millions of cubic kilometres of water to carve such deep gorges and canyons. Practically all the atmospheric water of all the ages of Mars should have been concentrated only on Labyrinthus Noctis. Moreover, the atmosphere on Mars is too thin and the temperatures too cold. Water that came to the surface wouldn’t stay liquid, he notes: “How could a river of sufficient force and size even form?”

Life less likely

Leone’s study could have far-reaching consequences. “If we suppose that lava formed the Noctis Labyrinthus and the Valles Marineris, then there has always been much less water on Mars than the research community has believed to date,” he says. Mars received very little rain in the past and it would not have been sufficient to erode such deep and large gorges. He adds that the shallow ocean north of the equator was probably much smaller than imagined – or hoped for; it would have existed only around the North Pole. The likelihood that life existed, or indeed still exists, on Mars is accordingly much lower.

Leone can imagine that the lava tubes still in existence are possible habitats for living organisms, as they would offer protection from the powerful UV rays that pummel the Martian surface. He therefore proposes a Mars mission to explore the lava tubes. He considers it feasible to send a rover through a hole in the ceiling of a tube and search for evidence of life. “Suitable locations could be determined using my data,” he says.

Swimming against the current

With his study, the Italian is swimming against the current and perhaps dismantling a dogma in the process. Most studies of the past 20 years have been concerned with the question of water on Mars and how it could have formed the canyons. Back in 1977, a researcher first posited the idea that the Valles Marineris may have been formed by lava, but the idea failed to gain traction. Leone says this was due to the tunnel vision that the red planet engenders and the prevailing mainstream research. The same story has been told for decades, with research targeted to that end, without achieving a breakthrough. Leone believes that in any case science would only benefit in considering other approaches. “I expect a spirited debate,” he says. “But my evidence is strong.”

Giovanni Leone | Eurek Alert!
Further information:
https://www.ethz.ch/en/news-and-events/eth-news/news/2014/05/mit-lavafluessen-gegen-den-strom.html

Further reports about: Lava Marineris Mars Source canyons formation

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>