Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

African dust caused red soil in southern Europe

12.11.2010
Spanish and American researchers have conducted a mineralogical and chemical analysis to ascertain the origin of "terra rossa" soil in the Mediterranean.

The results of the study reveal that mineral dust from the African regions of the Sahara and Sahel, which emit between 600 and 700 tonnes of dust a year, brought about the reddish soil in Mediterranean regions such as Mallorca and Sardinia between 12,000 and 25,000 years ago.

"The first hint of the relationship between African dust and certain soils in the region of the Mediterranean is their reddish or reddish-brown colour, similar to that of African aerosol filters, caused by their clay content", co-author of the study and researcher at the Centre for Ecological Research and Forestry Applications (CREAF) at the Universidad Autónoma de Barcelona, Anna Ávila explained to SINC.

The study, which has been published in Quaternary Science Reviews, finds that African mineral dust additions "play an important role" in the origin of the soils (palaeosols) in the Mediterranean region, namely on the island of Mallorca. The results resemble those published regarding the soils on Sardinia, "which indicates the likelihood of Africa being a common source".

In turn, "African dust explains the origin of the 'terra rossa' soils in the Mediterranean region located on top of mother carbonate rock," Ávila added.

In order to explain the origin of the reddish soils, the researchers considered three hypotheses: the non carbonate residual accumulation theory (soils are derived from the product of non carbonate weathering of the mother carbonate rock), the ascending 'sesquioxide' theory (accumulation of iron and aluminium hydroxides following capillary ascent from the bedrock) and the non-native soil accumulation theory (soil is formed by external sources, including airborne contributions).

The first two hypotheses were discarded due to the geochemical composition of the trace elements of red soils and the underlying rock being different. "The hypothesis of non-native (external) contribution was reinforced due to the geochemical value of the land coinciding with that of African dust," the scientist stated.

However, although the analysis of the soil indicates that African dust is the main contributor to the formation of the palaeosol, "the underlying rock also contributes, probably with residual quartz," the researcher added.

Origin and Destination of African Dust

"Terra rossa" (red soil in Italian) is located on carbonate rock (with a high content of carbonate) and is spread throughout the Iberian Peninsula, the South of France, the islands in the Mediterranean, Italy and along the coast of the Adriatic Sea, from Slovenia to Greece. The largest sources of airborne mineral dust can be found in the Sahara and Sahel regions, with emissions of between 600 and 700 tonnes per year. The destination of this dust has recently aroused great interest among the scientific community for various reasons.

Apart from the formation of red soils, African dust has "adverse effects on human health, such as respiratory problems and reduced visibility. It also arouses interest due to its implications where climate change is concerned, with the role that mineral aerosols play in the radiation balance, nutrient deposition and oceanic fertilisation", Ávila explained.

References:

Muhs, Daniel R.; Budahn, James; Ávila, Anna; Skipp, Gary; Freeman, Joshua; Patterson, DeAnna. "The role of African dust in the formation of Quaternary soils on Mallorca, Spain and implications for the genesis of Red Mediterranean soils" Quaternary Science Reviews 29(19-20): 2518-2543, septiembre de 2010.

SINC | EurekAlert!
Further information:
http://www.plataformasinc.es

More articles from Earth Sciences:

nachricht Predicting eruptions using satellites and math
28.06.2017 | Frontiers

nachricht NASA sees quick development of Hurricane Dora
27.06.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>