Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

African dust caused red soil in southern Europe

12.11.2010
Spanish and American researchers have conducted a mineralogical and chemical analysis to ascertain the origin of "terra rossa" soil in the Mediterranean.

The results of the study reveal that mineral dust from the African regions of the Sahara and Sahel, which emit between 600 and 700 tonnes of dust a year, brought about the reddish soil in Mediterranean regions such as Mallorca and Sardinia between 12,000 and 25,000 years ago.

"The first hint of the relationship between African dust and certain soils in the region of the Mediterranean is their reddish or reddish-brown colour, similar to that of African aerosol filters, caused by their clay content", co-author of the study and researcher at the Centre for Ecological Research and Forestry Applications (CREAF) at the Universidad Autónoma de Barcelona, Anna Ávila explained to SINC.

The study, which has been published in Quaternary Science Reviews, finds that African mineral dust additions "play an important role" in the origin of the soils (palaeosols) in the Mediterranean region, namely on the island of Mallorca. The results resemble those published regarding the soils on Sardinia, "which indicates the likelihood of Africa being a common source".

In turn, "African dust explains the origin of the 'terra rossa' soils in the Mediterranean region located on top of mother carbonate rock," Ávila added.

In order to explain the origin of the reddish soils, the researchers considered three hypotheses: the non carbonate residual accumulation theory (soils are derived from the product of non carbonate weathering of the mother carbonate rock), the ascending 'sesquioxide' theory (accumulation of iron and aluminium hydroxides following capillary ascent from the bedrock) and the non-native soil accumulation theory (soil is formed by external sources, including airborne contributions).

The first two hypotheses were discarded due to the geochemical composition of the trace elements of red soils and the underlying rock being different. "The hypothesis of non-native (external) contribution was reinforced due to the geochemical value of the land coinciding with that of African dust," the scientist stated.

However, although the analysis of the soil indicates that African dust is the main contributor to the formation of the palaeosol, "the underlying rock also contributes, probably with residual quartz," the researcher added.

Origin and Destination of African Dust

"Terra rossa" (red soil in Italian) is located on carbonate rock (with a high content of carbonate) and is spread throughout the Iberian Peninsula, the South of France, the islands in the Mediterranean, Italy and along the coast of the Adriatic Sea, from Slovenia to Greece. The largest sources of airborne mineral dust can be found in the Sahara and Sahel regions, with emissions of between 600 and 700 tonnes per year. The destination of this dust has recently aroused great interest among the scientific community for various reasons.

Apart from the formation of red soils, African dust has "adverse effects on human health, such as respiratory problems and reduced visibility. It also arouses interest due to its implications where climate change is concerned, with the role that mineral aerosols play in the radiation balance, nutrient deposition and oceanic fertilisation", Ávila explained.

References:

Muhs, Daniel R.; Budahn, James; Ávila, Anna; Skipp, Gary; Freeman, Joshua; Patterson, DeAnna. "The role of African dust in the formation of Quaternary soils on Mallorca, Spain and implications for the genesis of Red Mediterranean soils" Quaternary Science Reviews 29(19-20): 2518-2543, septiembre de 2010.

SINC | EurekAlert!
Further information:
http://www.plataformasinc.es

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>