Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Aerosols Tend To Weaken Hurricanes And Cyclones

11.03.2014

Aerosols in the atmosphere produced from human activities do indeed directly affect a hurricane or tropical cyclone, but not in a way many scientists had previously believed – in fact, they tend to weaken such storms, according to a new study that includes a team of Texas A&M University researchers.

Renyi Zhang, University Distinguished Professor in Atmospheric Sciences at Texas A&M, and colleagues Yuan Wang, Keun-Hee Lee, Yun Lin and Misty Levy have had their work published in the current issue of Nature Climate Change.

The team examined how anthropogenic aerosols – those produced from human activities, such as from factories, power plants, car and airplane emissions and other forms – play a role in the development of hurricanes. The team used a complex computer model and data obtained from Hurricane Katrina, which struck the Gulf Coast in 2005 and produced catastrophic damage.

The researchers found that aerosols tend to weaken the development of hurricanes (tropical storms that form in the Atlantic Ocean) or typhoons (those formed in the Pacific). They also found that aerosols tend to cause a hurricane to fall apart earlier and wind speeds are lower than storms where anthropogenic aerosols are not present.

On average, there are about 90 hurricanes or cyclones that form each year around the world, meaning their findings could be crucial in how we evaluate and prepare for destructive tropical storms.

“The results are surprising,” Zhang says, “because other studies have leaned global warming by greenhouse gases makes hurricanes more intense and frequent. We found that aerosols may operate oppositely than greenhouse gases in terms of influencing hurricanes.

“Another thing we find, however, is that aerosols appear to increase the amount of precipitation in a hurricane or typhoon. The rainbands associated with such tropical storms seem to be larger and stronger.”

Zhang says the results could prove beneficial in how future hurricanes are studied – and how important the presence or absence of aerosols impact the development of such storms.

Katrina, for example, was the most destructive storm in U.S. history, with damages totaling more than $100 billion and the storm killed more than 1,800 people. Winds topped 175 miles per hour and the storm flooded 80 percent of the New Orleans area.

“The information produced from this study could be very helpful in the way we forecast hurricanes,” Zhang explains.

“Future studies may need to factor in the aerosol effect. If a hurricane or typhoon is formed in a part of the world where we know that anthropogenic aerosols are almost certainly present, that data needs to be considered in the storm formation and development and eventual storm preparation.”

Yuan Wang, who conducted the research with Zhang while at Texas A&M, currently works at NASA’s Jet Propulsion Laboratory as a Caltech Postdoctoral Scholar.

The study was funded by grants from NASA, Texas A&M’s Supercomputing facilities and the Ministry of Science and Technology of China.

###
About Research at Texas A&M University: As one of the world's leading research institutions, Texas A&M is in the vanguard in making significant contributions to the storehouse of knowledge, including that of science and technology. Research conducted at Texas A&M represents annual expenditures of more than $820 million. That research creates new knowledge that provides basic, fundamental and applied contributions resulting in many cases in economic benefits to the state, nation and world. To learn more, visit http://research.tamu.edu.

Media contact: Keith Randall, News & Information Services, Texas A&M, at (979) 845-4644, Renyi Zhang at (979) 422-5826, or Yuan Wang at (979) 450-9106.

For more news about Texas A&M University, go to http://tamutimes.tamu.edu/

Follow us on Twitter at https://twitter.com/TAMU

Keith Randall | newswise

Further reports about: A&M Aerosols Hurricanes Technology Weaken destructive factories found gases greenhouse storms tropical

More articles from Earth Sciences:

nachricht A close-up look at an uncommon underwater eruption
11.01.2018 | Woods Hole Oceanographic Institution

nachricht Environmental history told by sludge: Global warming lets the dead zones in the Black Sea grow
10.01.2018 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

White graphene makes ceramics multifunctional

16.01.2018 | Materials Sciences

Breaking bad metals with neutrons

16.01.2018 | Materials Sciences

ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records

16.01.2018 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>