Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Aerosols Tend To Weaken Hurricanes And Cyclones

11.03.2014

Aerosols in the atmosphere produced from human activities do indeed directly affect a hurricane or tropical cyclone, but not in a way many scientists had previously believed – in fact, they tend to weaken such storms, according to a new study that includes a team of Texas A&M University researchers.

Renyi Zhang, University Distinguished Professor in Atmospheric Sciences at Texas A&M, and colleagues Yuan Wang, Keun-Hee Lee, Yun Lin and Misty Levy have had their work published in the current issue of Nature Climate Change.

The team examined how anthropogenic aerosols – those produced from human activities, such as from factories, power plants, car and airplane emissions and other forms – play a role in the development of hurricanes. The team used a complex computer model and data obtained from Hurricane Katrina, which struck the Gulf Coast in 2005 and produced catastrophic damage.

The researchers found that aerosols tend to weaken the development of hurricanes (tropical storms that form in the Atlantic Ocean) or typhoons (those formed in the Pacific). They also found that aerosols tend to cause a hurricane to fall apart earlier and wind speeds are lower than storms where anthropogenic aerosols are not present.

On average, there are about 90 hurricanes or cyclones that form each year around the world, meaning their findings could be crucial in how we evaluate and prepare for destructive tropical storms.

“The results are surprising,” Zhang says, “because other studies have leaned global warming by greenhouse gases makes hurricanes more intense and frequent. We found that aerosols may operate oppositely than greenhouse gases in terms of influencing hurricanes.

“Another thing we find, however, is that aerosols appear to increase the amount of precipitation in a hurricane or typhoon. The rainbands associated with such tropical storms seem to be larger and stronger.”

Zhang says the results could prove beneficial in how future hurricanes are studied – and how important the presence or absence of aerosols impact the development of such storms.

Katrina, for example, was the most destructive storm in U.S. history, with damages totaling more than $100 billion and the storm killed more than 1,800 people. Winds topped 175 miles per hour and the storm flooded 80 percent of the New Orleans area.

“The information produced from this study could be very helpful in the way we forecast hurricanes,” Zhang explains.

“Future studies may need to factor in the aerosol effect. If a hurricane or typhoon is formed in a part of the world where we know that anthropogenic aerosols are almost certainly present, that data needs to be considered in the storm formation and development and eventual storm preparation.”

Yuan Wang, who conducted the research with Zhang while at Texas A&M, currently works at NASA’s Jet Propulsion Laboratory as a Caltech Postdoctoral Scholar.

The study was funded by grants from NASA, Texas A&M’s Supercomputing facilities and the Ministry of Science and Technology of China.

###
About Research at Texas A&M University: As one of the world's leading research institutions, Texas A&M is in the vanguard in making significant contributions to the storehouse of knowledge, including that of science and technology. Research conducted at Texas A&M represents annual expenditures of more than $820 million. That research creates new knowledge that provides basic, fundamental and applied contributions resulting in many cases in economic benefits to the state, nation and world. To learn more, visit http://research.tamu.edu.

Media contact: Keith Randall, News & Information Services, Texas A&M, at (979) 845-4644, Renyi Zhang at (979) 422-5826, or Yuan Wang at (979) 450-9106.

For more news about Texas A&M University, go to http://tamutimes.tamu.edu/

Follow us on Twitter at https://twitter.com/TAMU

Keith Randall | newswise

Further reports about: A&M Aerosols Hurricanes Technology Weaken destructive factories found gases greenhouse storms tropical

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>