Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Aerosols Tend To Weaken Hurricanes And Cyclones

11.03.2014

Aerosols in the atmosphere produced from human activities do indeed directly affect a hurricane or tropical cyclone, but not in a way many scientists had previously believed – in fact, they tend to weaken such storms, according to a new study that includes a team of Texas A&M University researchers.

Renyi Zhang, University Distinguished Professor in Atmospheric Sciences at Texas A&M, and colleagues Yuan Wang, Keun-Hee Lee, Yun Lin and Misty Levy have had their work published in the current issue of Nature Climate Change.

The team examined how anthropogenic aerosols – those produced from human activities, such as from factories, power plants, car and airplane emissions and other forms – play a role in the development of hurricanes. The team used a complex computer model and data obtained from Hurricane Katrina, which struck the Gulf Coast in 2005 and produced catastrophic damage.

The researchers found that aerosols tend to weaken the development of hurricanes (tropical storms that form in the Atlantic Ocean) or typhoons (those formed in the Pacific). They also found that aerosols tend to cause a hurricane to fall apart earlier and wind speeds are lower than storms where anthropogenic aerosols are not present.

On average, there are about 90 hurricanes or cyclones that form each year around the world, meaning their findings could be crucial in how we evaluate and prepare for destructive tropical storms.

“The results are surprising,” Zhang says, “because other studies have leaned global warming by greenhouse gases makes hurricanes more intense and frequent. We found that aerosols may operate oppositely than greenhouse gases in terms of influencing hurricanes.

“Another thing we find, however, is that aerosols appear to increase the amount of precipitation in a hurricane or typhoon. The rainbands associated with such tropical storms seem to be larger and stronger.”

Zhang says the results could prove beneficial in how future hurricanes are studied – and how important the presence or absence of aerosols impact the development of such storms.

Katrina, for example, was the most destructive storm in U.S. history, with damages totaling more than $100 billion and the storm killed more than 1,800 people. Winds topped 175 miles per hour and the storm flooded 80 percent of the New Orleans area.

“The information produced from this study could be very helpful in the way we forecast hurricanes,” Zhang explains.

“Future studies may need to factor in the aerosol effect. If a hurricane or typhoon is formed in a part of the world where we know that anthropogenic aerosols are almost certainly present, that data needs to be considered in the storm formation and development and eventual storm preparation.”

Yuan Wang, who conducted the research with Zhang while at Texas A&M, currently works at NASA’s Jet Propulsion Laboratory as a Caltech Postdoctoral Scholar.

The study was funded by grants from NASA, Texas A&M’s Supercomputing facilities and the Ministry of Science and Technology of China.

###
About Research at Texas A&M University: As one of the world's leading research institutions, Texas A&M is in the vanguard in making significant contributions to the storehouse of knowledge, including that of science and technology. Research conducted at Texas A&M represents annual expenditures of more than $820 million. That research creates new knowledge that provides basic, fundamental and applied contributions resulting in many cases in economic benefits to the state, nation and world. To learn more, visit http://research.tamu.edu.

Media contact: Keith Randall, News & Information Services, Texas A&M, at (979) 845-4644, Renyi Zhang at (979) 422-5826, or Yuan Wang at (979) 450-9106.

For more news about Texas A&M University, go to http://tamutimes.tamu.edu/

Follow us on Twitter at https://twitter.com/TAMU

Keith Randall | newswise

Further reports about: A&M Aerosols Hurricanes Technology Weaken destructive factories found gases greenhouse storms tropical

More articles from Earth Sciences:

nachricht Sea ice extent sinks to record lows at both poles
23.03.2017 | NASA/Goddard Space Flight Center

nachricht Less radiation in inner Van Allen belt than previously believed
21.03.2017 | DOE/Los Alamos National Laboratory

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>