Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Acid Test: Study Reveals Both Losers and Winners of CO2-induced Ocean Acidification

01.12.2009
As the world’s seawater becomes more acidic due to rising atmospheric carbon dioxide, some shelled marine creatures may actually become bigger and stronger, according to a new study.

The finding, based on research by University of North Carolina at Chapel Hill marine scientist Justin Ries, could have important implications for ocean food webs and the multi-billion dollar global market for shellfish and crustaceans.

Previous research has shown that ocean acidification – the term for falling pH levels in the Earth’s oceans as they absorb increasing amounts of carbon dioxide (CO2) from the atmosphere – is likely to slow the growth or even dissolve the shells of such creatures.

However, the new study, published in the December issue of the journal Geology, suggests that sediment-dwelling marine organisms may exhibit a wider range of responses to CO2-induced acidification than previously thought: some may get weaker while others become stronger.

Researchers also found that creatures whose shells grew the most, such as crabs, tend to prey on those whose shells weakened the most, such as clams.

Such changes could have serious ramifications for predator and prey relationships that have evolved over hundreds of millions of years, said Ries, Ph.D., assistant professor of marine sciences in the UNC College of Arts and Sciences.

“There is no magic formula to predict how different species will respond, but one thing you can be sure of is that ecosystems as a whole will change because of these varied individual responses,” Ries said.

Researchers grew 18 different species of economically and ecologically important marine calcifiers (creatures that make their shells out of calcium carbonate) at various levels of CO2 predicted to occur over the next several centuries. When CO2 combines with water, it produces carbonic acid, raising the overall amount of carbon in seawater but reducing the amount of the carbonate ion used by organisms in their calcification.

Seven species (crabs, lobsters, shrimp, red and green calcifying algae, limpets and temperate urchins) showed a positive response, meaning they calcified at a higher rate and increased in mass under elevated CO2. Ten types of organisms (including oysters, scallops, temperate corals and tube worms) had reduced calcification under elevated CO2, with several (hard and soft clams, conchs, periwinkles, whelks and tropical urchins) seeing their shells dissolve. One species (mussels) showed no response.

“Shelled marine organisms need carbonate ions to build their shells that protect them from the intense predation that defines everyday life on the shallow sea floor,” Ries said. “The organisms that responded positively to higher CO2 levels are apparently more adept at converting the elevated dissolved inorganic carbon in the seawater, which results from elevated atmospheric CO2, back into a form that they can use directly in their calcification. The others, however, appear to be less adept at manipulating dissolved inorganic carbon.”

Ries said the varied responses may reflect differences in organisms’ ability to regulate pH levels at their sites of calcification; their ability to generate a protective organic layer that limits their exposure to surrounding seawater; whether they use more soluble forms of calcium carbonate in their shells; and their ability to utilize CO2 directly via photosynthesis.

The co-authors of the Geology study are Anne L. Cohen and Daniel C. McCorkle from Woods Hole Oceanographic Institution, Woods Hole, Mass.

Images:
To see the effect of different CO2 levels on an American lobster, go to:
http://uncnews.unc.edu/images/stories/news/science/2009/lobster.jpg
To see the effect of different CO2 levels on a blue crab, go to: http://uncnews.unc.edu/images/stories/news/science/2009/crab.jpg

To see the effect of different CO2 levels on a sea urchin, go to: http://uncnews.unc.edu/images/stories/news/science/2009/pencil%20urchin_credit%20justin%20ries.jpg

Ries’ Web page: http://www.unc.edu/~jries/

Media note: Ries can be reached at (919) 536-9070 or jries@email.unc.edu.

Patric Lane | Newswise Science News
Further information:
http://www.unc.edu

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>