Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Acid Test: Study Reveals Both Losers and Winners of CO2-induced Ocean Acidification

01.12.2009
As the world’s seawater becomes more acidic due to rising atmospheric carbon dioxide, some shelled marine creatures may actually become bigger and stronger, according to a new study.

The finding, based on research by University of North Carolina at Chapel Hill marine scientist Justin Ries, could have important implications for ocean food webs and the multi-billion dollar global market for shellfish and crustaceans.

Previous research has shown that ocean acidification – the term for falling pH levels in the Earth’s oceans as they absorb increasing amounts of carbon dioxide (CO2) from the atmosphere – is likely to slow the growth or even dissolve the shells of such creatures.

However, the new study, published in the December issue of the journal Geology, suggests that sediment-dwelling marine organisms may exhibit a wider range of responses to CO2-induced acidification than previously thought: some may get weaker while others become stronger.

Researchers also found that creatures whose shells grew the most, such as crabs, tend to prey on those whose shells weakened the most, such as clams.

Such changes could have serious ramifications for predator and prey relationships that have evolved over hundreds of millions of years, said Ries, Ph.D., assistant professor of marine sciences in the UNC College of Arts and Sciences.

“There is no magic formula to predict how different species will respond, but one thing you can be sure of is that ecosystems as a whole will change because of these varied individual responses,” Ries said.

Researchers grew 18 different species of economically and ecologically important marine calcifiers (creatures that make their shells out of calcium carbonate) at various levels of CO2 predicted to occur over the next several centuries. When CO2 combines with water, it produces carbonic acid, raising the overall amount of carbon in seawater but reducing the amount of the carbonate ion used by organisms in their calcification.

Seven species (crabs, lobsters, shrimp, red and green calcifying algae, limpets and temperate urchins) showed a positive response, meaning they calcified at a higher rate and increased in mass under elevated CO2. Ten types of organisms (including oysters, scallops, temperate corals and tube worms) had reduced calcification under elevated CO2, with several (hard and soft clams, conchs, periwinkles, whelks and tropical urchins) seeing their shells dissolve. One species (mussels) showed no response.

“Shelled marine organisms need carbonate ions to build their shells that protect them from the intense predation that defines everyday life on the shallow sea floor,” Ries said. “The organisms that responded positively to higher CO2 levels are apparently more adept at converting the elevated dissolved inorganic carbon in the seawater, which results from elevated atmospheric CO2, back into a form that they can use directly in their calcification. The others, however, appear to be less adept at manipulating dissolved inorganic carbon.”

Ries said the varied responses may reflect differences in organisms’ ability to regulate pH levels at their sites of calcification; their ability to generate a protective organic layer that limits their exposure to surrounding seawater; whether they use more soluble forms of calcium carbonate in their shells; and their ability to utilize CO2 directly via photosynthesis.

The co-authors of the Geology study are Anne L. Cohen and Daniel C. McCorkle from Woods Hole Oceanographic Institution, Woods Hole, Mass.

Images:
To see the effect of different CO2 levels on an American lobster, go to:
http://uncnews.unc.edu/images/stories/news/science/2009/lobster.jpg
To see the effect of different CO2 levels on a blue crab, go to: http://uncnews.unc.edu/images/stories/news/science/2009/crab.jpg

To see the effect of different CO2 levels on a sea urchin, go to: http://uncnews.unc.edu/images/stories/news/science/2009/pencil%20urchin_credit%20justin%20ries.jpg

Ries’ Web page: http://www.unc.edu/~jries/

Media note: Ries can be reached at (919) 536-9070 or jries@email.unc.edu.

Patric Lane | Newswise Science News
Further information:
http://www.unc.edu

More articles from Earth Sciences:

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

nachricht What makes erionite carcinogenic?
13.01.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>