Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Achilles' heel of ice shelves is beneath the water, scientists reveal

16.09.2013
New research has revealed that more ice leaves Antarctica by melting from the underside of submerged ice shelves than was previously thought, accounting for as much as 90 per cent of ice loss in some areas.

Iceberg production and melting causes 2,800 cubic kilometres of ice to leave the Antarctic ice sheet every year. Most of this is replaced by snowfall but any imbalance contributes to a change in global sea level.


A photo of the calving front of the Filchner Ice Shelf, Antarctica (credit: Jonathan Bamber)

For many decades, experts have believed that the most important process responsible for this huge loss was iceberg calving - the breaking off of chunks of ice at the edge of a glacier.

New research, led by academics at the University of Bristol with colleagues at Utrecht University and the University of California, has used satellite and climate model data to prove that this sub-shelf melting has as large an impact as iceberg calving for Antarctica as a whole and for some areas is far more important.

The findings, published today [15 September] in Nature, are crucial for understanding how the ice sheet interacts with the rest of the climate system and particularly the ocean.

During the last decade, the Antarctic ice-sheet has been losing an increasing amount of its volume. The annual turnover of ice equates to 700 times the four cubic kilometres per year which makes up the entire domestic water supply for the UK.

Researchers found that, for some ice shelves, melting on its underbelly could account for as much as 90 per cent of the mass loss, while for others it was only 10 per cent.

Ice shelves which are thinning already were identified as losing most of their mass from this melting, a finding which will be a good indicator for which ice shelves may be particularly vulnerable to changes in ocean warming in the future.

The scientists used data from a suite of satellite and airborne missions to accurately measure the flow of the ice, its elevation and its thickness. These observations were combined with the output of a climate model for snowfall over the ice sheet.

They compared how much snow was falling on the surface and accumulating against how much ice was leaving the continent, entering the ocean and calving. By comparing these estimates, they were able to determine the proportion that was lost by each process.

Professor Jonathan Bamber, from the University of Bristol's School of Geographical Sciences, said: "Understanding how the largest ice mass on the planet loses ice to the oceans is one of the most fundamental things we need to know for Antarctica. Until recently, we assumed that most of the ice was lost through icebergs.

"Now we realise that melting underneath the ice shelves by the ocean is equally important and for some places, far more important. This knowledge is crucial for understanding how the ice sheets interact now, and in the future, to changes in climate."

The research was funded by an EU programme called ice2sea and a Natural Environment Research Council (NERC) funded project called Resolving Antarctic mass TrEnds (RATES).

Image

A photo of the calving front of the Filchner Ice Shelf, Antarctica, is available to download from here (please credit Jonathan Bamber): https://fluff.bris.ac.uk/fluff/u1/inpaw/nLkaf9bwhupS7LOju3SFaAHbD/

Paper

'Calving fluxes and basal melt rates of Antarctic ice shelves', by Mathieu Depoorter, Jonathan Bamber, Jennifer Griggs, Stefan Ligtenberg, Michiel van den Broeke and Geir Moholdt in Nature.

About ice2sea

Ice2sea brings together the EU's scientific and operational expertise from 24 leading institutions across Europe and beyond. Improved projections of the contribution of ice to sea-level rise produced by this major programme funded by the European Commission's Framework 7 Programme (grant agreement 226375) will inform the fifth IPCC report (due later this month). In 2007, the fourth Intergovernmental Panel on Climate Change (IPCC) report highlighted ice-sheets as the most significant remaining uncertainty in projections of sea-level rise.

About the Natural Environment Research Council (NERC)

NERC funds world-class science, in universities and its own research centres, that increases knowledge and understanding of the natural world. It is tackling major environmental issues such as climate change, biodiversity and natural hazards. NERC receives around £400m a year from the government's science budget, which is used to provide independent research and training in the environmental sciences.

Issued by Philippa Walker, Press Officer at the University of Bristol, on +44 (0)117 928 7777 or philippa.walker@bristol.ac.uk

Philippa Walker | EurekAlert!
Further information:
http://www.bristol.ac.uk

More articles from Earth Sciences:

nachricht NASA sees the end of ex-Tropical Cyclone 02W
21.04.2017 | NASA/Goddard Space Flight Center

nachricht New research unlocks forests' potential in climate change mitigation
21.04.2017 | Clemson University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>