Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Absence of evidence for a meteorite impact event 13,000 years ago

09.12.2009
An international team of scientists led by researchers at the University of Hawaii at Manoa have found no evidence supporting an extraterrestrial impact event at the onset of the Younger Dryas ~13000 years ago.

The Younger Dryas is an abrupt cooling event in Earth's history. It coincided with the extinction of many large mammals including the woolly mammoth, the saber toothed jaguar and many sloths. This cooling period is generally considered to be the result of the complex global climate system, possibly spurred on by a reduction or slowdown of the thermohaline circulation in North America.

This paradigm was challenged two years ago by a group of researchers that reported finding high iridium concentrations in terrestrial sediments dated during this time period, which led them to theorise that an impact event was instead the instigator of this climate shift. A team led by François Paquay, a Doctoral graduate student in the Department of Geology and Geophysics at the University of Hawaii at Manoa (UHM) decided to also investigate this theory, to add more evidence to what they considered a conceptually appealing theory.

However, not only were they unable to replicate the results found by the other researchers, but additional lines of evidence failed to support an impact theory for the onset of the Younger Dryas. Their results will be published in the December 7th early online edition of the prestigious journal the Proceedings of the National Academy of Sciences.

The idea that an impact event may have been the instigator for this cooling period was appealing because of several alleged impact markers, especially the high iridium concentrations that the previous team reported. However, it is difficult for proponents of this theory to explain why no impact crater of this age is known. "There is a black mat layer across North America which is correlated to the Younger Dryas climatic shift seen in Greenland ice cores dated at 13 thousand years ago by radio carbon," explains Paquay. "Initially I thought this type of layer could be associated with an impact event because concentration in the proxies of widespread wildfires are sky high. That plus very high levels of iridium (which is one indicator used to indicate extraterrestrial impact events). So the theory was conceptually appealing, but because of the missing impact site, the idea of one or multiple airburst arose."

To corroborate the theory, Paquay and his colleagues decided to take a three-pronged approach. The first was to replicate the original researchers data, the second step was to look for other tracers, specifically osmium isotopes, of extraterrestrial matter in those rocks, and the third step was to look for these concentrations in other settings. "Because there are so many aspects to the impact theory, we decided to just focus on geochemical evidence that was associated with it, like the concentration of iridium and other platinum group elements, and the osmium isotopes," says Paquay. "We also decided to look in very high resolution sediment cores across North America, and yet we could find nothing in our data to support their theory."

The team includes American, Belgian and Canadian researchers. Analysis of the sediments was done both at UHM and in Belgium, using the same sediments from the same interval and indepedently did the analysis work and got similar results. Both the marine and terrestrial sediment records do not indicate that an impact event was the trigger for the transition into the Younger Dryas cold period. "The marine and terrestrial record both complement each other to support this finding," concludes Paquay. "That's what makes the beauty of this study."

This project was supported by the Geological Society of America and the National Science Foundation. Sediment samples were provided by the Integrated Ocean Drilling Program.

The other authors from this paper are Greg Ravizza (also from UHM), Steven Goderis and Philippe Claeys from Vrije Universiteit Brussel, Frank Vanhaeck from the Universiteit Ghent, Matthew Boyd from Lakehead University, Todd A. Surovell from the University of Wyoming at Laramie, and Vance T. Holliday and C. Vance Haynes, Jr. from the University of Arizona at Tucson.

This research will be presented at the American Geophysical Union Fall 2009 Meeting in San Francisco. Wednesday December 16th, 2:52 PM - 3:04 PM, Room 2006 Moscone West

Session Title: PP33B. "Younger Dryas Boundary: Extraterrestrial Impact or Not? II"

Contact: François S. Paquay, Graduate Student, Department of Geology and Geophysics, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, paquay@hawaii.edu (808) 673-3137

SOEST Media Contact: Tara Hicks Johnson, (808) 956-3151, hickst@hawaii.edu

Absence of geochemical evidence for an impact event at the Bølling–Allerød/Younger Dryas transition. François S. Paquay, Greg Ravizza (University of Hawaii at Manoa), Steven Goderis, Philippe Claeys (Vrije Universiteit Brussel), Steven Goderis, Frank Vanhaeck (Universiteit Ghent), Matthew Boyd (Lakehead University), Todd A. Surovell (University of Wyoming at Laramie), Vance T. Holliday, C. Vance Haynes, Jr. (University of Arizona at Tucson)

PNAS Early Edition, December 7, 2009 www.pnas.org_cgi_doi_10.1073_pnas.0908874106

The School of Ocean and Earth Science and Technology at the University of Hawaii at Manoa was established by the Board of Regents of the University of Hawai'i in 1988 in recognition of the need to realign and further strengthen the excellent education and research resources available within the University. SOEST brings together four academic departments, three research institutes, several federal cooperative programs, and support facilities of the highest quality in the nation to meet challenges in the ocean, earth and planetary sciences and technologies.

Tara Hicks Johnson | EurekAlert!
Further information:
http://www.hawaii.edu
http://www.soest.hawaii.edu

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>