Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Zen Discovery: Unrusted Iron in Ocean

10.02.2009
Nature Geoscience study reveals way for pure iron from sea floor to feed life at surface. Iron dust, the gold of the oceans and rarest nutrient for most marine life, can be washed down by rivers or blown out to sea or, research shows, float up uncorroded from the sea floor.

Iron dust, the gold of the oceans and rarest nutrient for most marine life, can be washed down by rivers or blown out to sea or – a surprising new study finds – float up from the sea floor.

The discovery, published online Feb. 8 in Nature Geoscience, connects life at the surface to events occurring at extreme depths and pressures.

The two worlds were long assumed to have little interaction.

A team from the University of Southern California, Woods Hole Oceanographic Institution and Lawrence Berkeley National Laboratory took samples from the East Pacific Rise, a volcanic mid-ocean ridge.

The group found that organic compounds capture some iron spewed by hydrothermal vents, enabling it to be carried away in seawater.

Iron trapped in this way does not rust.

For the scientists, discovering shiny iron in the ocean was like fishing a dry sponge out of a bath.

“Everything we know about the chemical properties of iron tells us that it should be oxidized. It should be rusted,” said team leader Katrina Edwards of USC.

The metal’s purity has practical value. Aquatic organisms metabolize pure iron much more easily than its rusted form, Edwards said.

How much captured iron floats into surface waters remains unknown. But any that does would nourish ocean life more efficiently than the oxidized iron from regular sources.

“This is one potential mechanism of creating essentially a natural iron fertilization mechanism that’s completely unknown,” Edwards said.

Some marine scientists have called for iron fertilization because of the metal’s crucial place in the aquatic food chain. Iron is the limiting nutrient in most parts of the oceans, meaning that its scarcity is the only thing standing in the way of faster growth.

Iron’s equivalent on land is nitrogen. Crop yields rose dramatically during the 20th century in part because of increased nitrogen fertilization.

The expedition team discovered the phenomenon of iron capture serendipitously. Edwards and her collaborators were studying deep-sea bacteria that catalyze the iron rusting reaction.

Of the possible reactions that support microbial communities on rocks, iron oxidation is one of the most important, Edwards explained.

Unfortunately, she added, “it’s probably the least well understood major metabolic pathway in the microbial world.”

The bacteria involved do not grow well in culture, so the researchers are using a range of molecular techniques to search for genes related to iron oxidation.

One major question involves the importance of bacteria-catalyzed oxidation versus the conventional rusting process. How much of the world’s iron is deposited with bacterial help? And how much escapes both bacteria and the natural oxidation process?

The sea floor holds the answer.

The samples were collected continuously using a remote sampling device deployed and retrieved from the research vessel Atlantis between May 16 and June 27, 2006.

The other team members were Brandy Toner of Woods Hole, who was first author on the Nature Geoscience study; Steven Manganini, Cara Santelli, Olivier Rouxel and Christopher German, also of Woods Hole; James Moffett, professor of biological sciences at USC; and Matthew Marcus of the Advanced Light Source at Lawrence Berkeley National Laboratory.

The research was supported by the National Science Foundation, NASA and the Department of Energy.

Carl Marziali | Newswise Science News
Further information:
http://www.usc.edu

More articles from Earth Sciences:

nachricht Impacts of mass coral die-off on Indian Ocean reefs revealed
21.02.2017 | University of Exeter

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>