Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Zen Discovery: Unrusted Iron in Ocean

10.02.2009
Nature Geoscience study reveals way for pure iron from sea floor to feed life at surface. Iron dust, the gold of the oceans and rarest nutrient for most marine life, can be washed down by rivers or blown out to sea or, research shows, float up uncorroded from the sea floor.

Iron dust, the gold of the oceans and rarest nutrient for most marine life, can be washed down by rivers or blown out to sea or – a surprising new study finds – float up from the sea floor.

The discovery, published online Feb. 8 in Nature Geoscience, connects life at the surface to events occurring at extreme depths and pressures.

The two worlds were long assumed to have little interaction.

A team from the University of Southern California, Woods Hole Oceanographic Institution and Lawrence Berkeley National Laboratory took samples from the East Pacific Rise, a volcanic mid-ocean ridge.

The group found that organic compounds capture some iron spewed by hydrothermal vents, enabling it to be carried away in seawater.

Iron trapped in this way does not rust.

For the scientists, discovering shiny iron in the ocean was like fishing a dry sponge out of a bath.

“Everything we know about the chemical properties of iron tells us that it should be oxidized. It should be rusted,” said team leader Katrina Edwards of USC.

The metal’s purity has practical value. Aquatic organisms metabolize pure iron much more easily than its rusted form, Edwards said.

How much captured iron floats into surface waters remains unknown. But any that does would nourish ocean life more efficiently than the oxidized iron from regular sources.

“This is one potential mechanism of creating essentially a natural iron fertilization mechanism that’s completely unknown,” Edwards said.

Some marine scientists have called for iron fertilization because of the metal’s crucial place in the aquatic food chain. Iron is the limiting nutrient in most parts of the oceans, meaning that its scarcity is the only thing standing in the way of faster growth.

Iron’s equivalent on land is nitrogen. Crop yields rose dramatically during the 20th century in part because of increased nitrogen fertilization.

The expedition team discovered the phenomenon of iron capture serendipitously. Edwards and her collaborators were studying deep-sea bacteria that catalyze the iron rusting reaction.

Of the possible reactions that support microbial communities on rocks, iron oxidation is one of the most important, Edwards explained.

Unfortunately, she added, “it’s probably the least well understood major metabolic pathway in the microbial world.”

The bacteria involved do not grow well in culture, so the researchers are using a range of molecular techniques to search for genes related to iron oxidation.

One major question involves the importance of bacteria-catalyzed oxidation versus the conventional rusting process. How much of the world’s iron is deposited with bacterial help? And how much escapes both bacteria and the natural oxidation process?

The sea floor holds the answer.

The samples were collected continuously using a remote sampling device deployed and retrieved from the research vessel Atlantis between May 16 and June 27, 2006.

The other team members were Brandy Toner of Woods Hole, who was first author on the Nature Geoscience study; Steven Manganini, Cara Santelli, Olivier Rouxel and Christopher German, also of Woods Hole; James Moffett, professor of biological sciences at USC; and Matthew Marcus of the Advanced Light Source at Lawrence Berkeley National Laboratory.

The research was supported by the National Science Foundation, NASA and the Department of Energy.

Carl Marziali | Newswise Science News
Further information:
http://www.usc.edu

More articles from Earth Sciences:

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Explaining how 2-D materials break at the atomic level

18.01.2017 | Materials Sciences

Data analysis optimizes cyber-physical systems in telecommunications and building automation

18.01.2017 | Information Technology

Reducing household waste with less energy

18.01.2017 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>