Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A unique geography -- and soot and dust -- conspire against Himalayan glaciers

16.12.2009
"So many disparate elements, both natural and man-made, converge in the Himalayas," said William Lau, a climatologist from NASA's Goddard Space Flight Center in Greenbelt, Md. "There's no other place in the world that could produce such a powerful atmospheric heat pump," referring to a new hypothesis he's put forward to explain the rapid retreat of Himalayan glaciers in recent decades.

The Himalayas, home to the tallest mountains on Earth, include more than 110 peaks and stretch 2,500 kilometers (1,550 miles). Bounded to the north by the Tibetan Plateau, to the west by deserts, and to the south by a bowl-like basin teeming with people, the mountains hold 10,000 glaciers.

These massive rivers of ice spill off mountain sides and grind down through creviced valleys. In the spring, when the monsoon carries moist air from the Indian Ocean, the glaciers begin to thaw, replenishing lakes, streams, and some of Asia's mightiest rivers, on which more than a billion people depend.

South of the Himalayas -- which forms the east-west edge of the table-like Tibetan Plateau -- the mountains give way to the Indo-Gangetic plain, one of the most fertile and densely populated areas on Earth. The plain has become a megalopolis of cities including Delhi, Dhaka, Kanpur, and Karachi, as well as a hotspot for air pollution, with a steady supply of industrial soot mixing with ash and other particles in the air.

To the west, in the northwestern part of the Indian subcontinent, the Thar Desert stretches across 200,000 square kilometers (77,000 square miles) of arid, dusty land. During the spring, westerly winds pluck dust and sand from the Thar and blow it toward the Indo-Gangetic plain.

The dust joins a mash of industrial pollutants to create a massive brown cloud visible from space. Underneath the brown cloud, some solar radiation is blocked from reaching the surface, causing the under-lying land surface to cool.

"Surprisingly, these brown aerosol clouds seem to have potent climate consequences that affect the entire region," Lau said.

The thick soot and dust layer absorbs solar radiation, and heats up the air around the Himalayan foothills. The warm, rising air enhances the seasonal northward flow of humid monsoon winds, forcing moisture and hot air up the slopes of the Himalayas.

As the aerosol particles rise on the warm, convecting air, they produce more rain over northern India and the Himalayan foothill, which further warms the atmosphere and fuels a "heat pump" that draws yet more warm air to the region.

"The phenomenon changes the timing and intensity of the monsoon, effectively transferring heat from the low-lying lands over the subcontinent to the atmosphere over the Tibetan Plateau, which in turn warms the high-altitude land surface and hastens glacial retreat," Lau said. His modeling shows that aerosols -- particularly black carbon and dust -- likely cause as much of the glacial retreat in the region as greenhouse gases via this "heat pump" effect.

Adam Voiland | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Earth Sciences:

nachricht Research sheds new light on forces that threaten sensitive coastlines
24.04.2017 | Indiana University

nachricht NASA sees the end of ex-Tropical Cyclone 02W
21.04.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>