Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A tiny tyrannosaur

21.09.2009
Small fossil described in Science predates the T. rex

When you think of Tyrannosaurus rex, a small set of striking physical traits comes to mind: an oversized skull with powerful jaws, tiny forearms, and the muscular hind legs of a runner.

But, researchers have just unearthed a much smaller tyrannosauroid in China, no more than three meters long, that displays all the same features – and it predates the T. rex by tens of millions of years.

This finding, published online by the journal Science at the Science Express website on September 17, means that such specialized physical features did not evolve as the prehistoric predators grew in size. Instead, they were present for feeding efficiency at all sizes of the dinosaurs during their reign in the Cretaceous Period.

Paul Sereno from the University of Chicago and National Geographic explorer-in-residence, along with colleagues, studied the new, small-bodied fossil, naming it Raptorex kriegsteini, and estimated that it was a young adult when it died. They examined the skull, teeth, nose, spine, shoulders, forearms, pelvis, and hind legs of the new fossil, comparing the features to larger evolutionary versions of tyrannosauroid dinosaurs.

"First, we used the best mechanical preparation of the specimen possible, which entails the finest needles and air abrasives under a microscope," Sereno said in an email interview. "Then we made molds and casts of the cranial bones, assembled a cast skull, and sent that skull through a CT scanner at the University of Chicago hospital to get the snout cross-section… We used silicone on the skull roof to cast the forebrain of R. kriegsteini… Finally, I made a thin-section from one femur, or thigh bone, for microscopic examination, and determined that the individual had lived to be five or six years old."

The researchers conclude that the "predatory skeletal design" of R. kriegsteini was simply scaled up with little modification in its carnivorous descendants, whose body masses eventually grew 90 times greater.

Sereno and his colleagues also use this new fossil to propose and describe three major morphological stages in the evolutionary history of tyrannosauroid dinosaurs.

Dr. Sereno's coauthors are Lin Tan of the Long Hao Institute of Geology and Paleontology in Hohhot, PRC; Stephen Brusatte of the American Museum of Natural History in New York, NY; Henry Kriegstein of Higham, MA; Xijin Zhao of the Chinese Academy of Sciences in Beijing, PRC; and Karen Cloward of Western Paleontological Laboratories, Inc. in Lehi, UT. The paper is entitled, "Tyrannosaurid Skeletal Design First Evolved at Small Body Size."

This research was funded by the David and Lucile Packard Foundation and the National Geographic Society.

The American Association for the Advancement of Science (AAAS) is the world's largest general scientific society, and publisher of the journal Science (www.sciencemag.org). AAAS was founded in 1848, and serves 262 affiliated societies and academies of science, reaching 10 million individuals. Science has the largest paid circulation of any peer-reviewed general science journal in the world, with an estimated total readership of 1 million. The nonprofit AAAS (www.aaas.org) is open to all and fulfills its mission to "advance science and serve society" through initiatives in science policy; international programs; science education; and more. For the latest research news, log onto EurekAlert!, www.eurekalert.org, the premier science-news Web site, a service of AAAS.

Kathleen Wren | EurekAlert!
Further information:
http://www.aaas.org

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>