Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A tiny tyrannosaur

21.09.2009
Small fossil described in Science predates the T. rex

When you think of Tyrannosaurus rex, a small set of striking physical traits comes to mind: an oversized skull with powerful jaws, tiny forearms, and the muscular hind legs of a runner.

But, researchers have just unearthed a much smaller tyrannosauroid in China, no more than three meters long, that displays all the same features – and it predates the T. rex by tens of millions of years.

This finding, published online by the journal Science at the Science Express website on September 17, means that such specialized physical features did not evolve as the prehistoric predators grew in size. Instead, they were present for feeding efficiency at all sizes of the dinosaurs during their reign in the Cretaceous Period.

Paul Sereno from the University of Chicago and National Geographic explorer-in-residence, along with colleagues, studied the new, small-bodied fossil, naming it Raptorex kriegsteini, and estimated that it was a young adult when it died. They examined the skull, teeth, nose, spine, shoulders, forearms, pelvis, and hind legs of the new fossil, comparing the features to larger evolutionary versions of tyrannosauroid dinosaurs.

"First, we used the best mechanical preparation of the specimen possible, which entails the finest needles and air abrasives under a microscope," Sereno said in an email interview. "Then we made molds and casts of the cranial bones, assembled a cast skull, and sent that skull through a CT scanner at the University of Chicago hospital to get the snout cross-section… We used silicone on the skull roof to cast the forebrain of R. kriegsteini… Finally, I made a thin-section from one femur, or thigh bone, for microscopic examination, and determined that the individual had lived to be five or six years old."

The researchers conclude that the "predatory skeletal design" of R. kriegsteini was simply scaled up with little modification in its carnivorous descendants, whose body masses eventually grew 90 times greater.

Sereno and his colleagues also use this new fossil to propose and describe three major morphological stages in the evolutionary history of tyrannosauroid dinosaurs.

Dr. Sereno's coauthors are Lin Tan of the Long Hao Institute of Geology and Paleontology in Hohhot, PRC; Stephen Brusatte of the American Museum of Natural History in New York, NY; Henry Kriegstein of Higham, MA; Xijin Zhao of the Chinese Academy of Sciences in Beijing, PRC; and Karen Cloward of Western Paleontological Laboratories, Inc. in Lehi, UT. The paper is entitled, "Tyrannosaurid Skeletal Design First Evolved at Small Body Size."

This research was funded by the David and Lucile Packard Foundation and the National Geographic Society.

The American Association for the Advancement of Science (AAAS) is the world's largest general scientific society, and publisher of the journal Science (www.sciencemag.org). AAAS was founded in 1848, and serves 262 affiliated societies and academies of science, reaching 10 million individuals. Science has the largest paid circulation of any peer-reviewed general science journal in the world, with an estimated total readership of 1 million. The nonprofit AAAS (www.aaas.org) is open to all and fulfills its mission to "advance science and serve society" through initiatives in science policy; international programs; science education; and more. For the latest research news, log onto EurekAlert!, www.eurekalert.org, the premier science-news Web site, a service of AAAS.

Kathleen Wren | EurekAlert!
Further information:
http://www.aaas.org

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>