Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A tiny tyrannosaur

21.09.2009
Small fossil described in Science predates the T. rex

When you think of Tyrannosaurus rex, a small set of striking physical traits comes to mind: an oversized skull with powerful jaws, tiny forearms, and the muscular hind legs of a runner.

But, researchers have just unearthed a much smaller tyrannosauroid in China, no more than three meters long, that displays all the same features – and it predates the T. rex by tens of millions of years.

This finding, published online by the journal Science at the Science Express website on September 17, means that such specialized physical features did not evolve as the prehistoric predators grew in size. Instead, they were present for feeding efficiency at all sizes of the dinosaurs during their reign in the Cretaceous Period.

Paul Sereno from the University of Chicago and National Geographic explorer-in-residence, along with colleagues, studied the new, small-bodied fossil, naming it Raptorex kriegsteini, and estimated that it was a young adult when it died. They examined the skull, teeth, nose, spine, shoulders, forearms, pelvis, and hind legs of the new fossil, comparing the features to larger evolutionary versions of tyrannosauroid dinosaurs.

"First, we used the best mechanical preparation of the specimen possible, which entails the finest needles and air abrasives under a microscope," Sereno said in an email interview. "Then we made molds and casts of the cranial bones, assembled a cast skull, and sent that skull through a CT scanner at the University of Chicago hospital to get the snout cross-section… We used silicone on the skull roof to cast the forebrain of R. kriegsteini… Finally, I made a thin-section from one femur, or thigh bone, for microscopic examination, and determined that the individual had lived to be five or six years old."

The researchers conclude that the "predatory skeletal design" of R. kriegsteini was simply scaled up with little modification in its carnivorous descendants, whose body masses eventually grew 90 times greater.

Sereno and his colleagues also use this new fossil to propose and describe three major morphological stages in the evolutionary history of tyrannosauroid dinosaurs.

Dr. Sereno's coauthors are Lin Tan of the Long Hao Institute of Geology and Paleontology in Hohhot, PRC; Stephen Brusatte of the American Museum of Natural History in New York, NY; Henry Kriegstein of Higham, MA; Xijin Zhao of the Chinese Academy of Sciences in Beijing, PRC; and Karen Cloward of Western Paleontological Laboratories, Inc. in Lehi, UT. The paper is entitled, "Tyrannosaurid Skeletal Design First Evolved at Small Body Size."

This research was funded by the David and Lucile Packard Foundation and the National Geographic Society.

The American Association for the Advancement of Science (AAAS) is the world's largest general scientific society, and publisher of the journal Science (www.sciencemag.org). AAAS was founded in 1848, and serves 262 affiliated societies and academies of science, reaching 10 million individuals. Science has the largest paid circulation of any peer-reviewed general science journal in the world, with an estimated total readership of 1 million. The nonprofit AAAS (www.aaas.org) is open to all and fulfills its mission to "advance science and serve society" through initiatives in science policy; international programs; science education; and more. For the latest research news, log onto EurekAlert!, www.eurekalert.org, the premier science-news Web site, a service of AAAS.

Kathleen Wren | EurekAlert!
Further information:
http://www.aaas.org

More articles from Earth Sciences:

nachricht World’s oldest known oxygen oasis discovered
18.01.2018 | Eberhard Karls Universität Tübingen

nachricht A close-up look at an uncommon underwater eruption
11.01.2018 | Woods Hole Oceanographic Institution

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>