Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A third of the world’s biggest groundwater basins are in distress

17.06.2015

Reserves likely far smaller than previously thought, new studies find

Human consumption is rapidly draining about a third of its largest groundwater basins, despite having little to no accurate data about how much water remains in them, according to two new studies led by the University of California, Irvine, using data from NASA’s Gravity Recovery and Climate Experiment (GRACE) satellites.


Groundwater storage trends for Earth’s 37 largest aquifers from UCI-led study using NASA GRACE data (2003 – 2013). Of these, 21 have exceeded sustainability tipping points and are being depleted, with 13 considered significantly distressed, threatening regional water security and resilience. Credit: UC Irvine / NASA

The result is that significant segments of Earth’s population are consuming groundwater quickly without knowing when it might run out, the researchers conclude. The new findings have been accepted for publication in Water Resources Research, a journal of the American Geophysical Union, and appear online today.

“Available physical and chemical measurements are simply insufficient,” said University of California Irvine professor and principal investigator Jay Famiglietti, who is also the senior water scientist at NASA’s Jet Propulsion Laboratory. “Given how quickly we are consuming the world’s groundwater reserves, we need a coordinated global effort to determine how much is left.”

The studies are the first to characterize groundwater losses via data from space, using readings generated by NASA’s twin Gravity Recovery and Climate Experiment (GRACE) satellites that measure dips and bumps in Earth’s gravity, which is affected by the weight of water.

For the first paper, researchers examined the planet’s 37 largest aquifers between 2003 and 2013. The eight worst off were classified as overstressed, with nearly no natural replenishment to offset usage. Another five aquifers were found, in descending order, to be extremely or highly stressed, depending upon the level of replenishment in each – still in trouble but with some water flowing back into them.

The most overburdened are in the world’s driest areas, which draw heavily on underground water. Climate change and population growth are expected to intensify the problem.

“What happens when a highly stressed aquifer is located in a region with socioeconomic or political tensions that can’t supplement declining water supplies fast enough?” asked the lead author on both studies, Alexandra Richey, who conducted the research as a UCI doctoral student. “We’re trying to raise red flags now to pinpoint where active management today could protect future lives and livelihoods.”

The research team – which included co-authors from NASA, the National Center for Atmospheric Research, National Taiwan University and UC Santa Barbara – found that the Arabian Aquifer System, an important water source for more than 60 million people, is the most overstressed in the world.

The Indus Basin aquifer of northwestern India and Pakistan is the second-most overstressed, and the Murzuk-Djado Basin in northern Africa is third. California’s Central Valley, utilized heavily for agriculture and suffering rapid depletion, was slightly better off but still labeled highly stressed in the first study.

“As we’re seeing in California right now, we rely much more heavily on groundwater during drought,” Famiglietti said. “When examining the sustainability of a region’s water resources, we absolutely must account for that dependence.”

In a companion paper appearing online today in the same journal, the scientists conclude that the total remaining volume of the world’s usable groundwater is poorly known, with often widely varying estimates, but is likely far less than rudimentary estimates made decades ago.

By comparing their satellite-derived groundwater loss rates to what little data exists on groundwater availability, they found major discrepancies in projected “time to depletion.” In the overstressed Northwest Sahara Aquifer System, for example, this fluctuated between 10 and 21,000 years.

“We don’t actually know how much is stored in each of these aquifers. Estimates of remaining storage might vary from decades to millennia,” Richey said. “In a water-scarce society, we can no longer tolerate this level of uncertainty, especially since groundwater is disappearing so rapidly.”

The study notes that the dearth of groundwater is already leading to significant ecological damage, including depleted rivers, declining water quality and subsiding land.

Groundwater aquifers are typically located in soil or deeper rock layers beneath Earth’s surface. The depth and thickness of many make it tough and costly to drill to or otherwise reach bedrock and learn where the moisture bottoms out. But it has to be done, according to the authors.

###

The American Geophysical Union is dedicated to advancing the Earth and space sciences for the benefit of humanity through its scholarly publications, conferences, and outreach programs. AGU is a not-for-profit, professional, scientific organization representing more than 60,000 members in 139 countries. Join the conversation on Facebook, Twitter, YouTube, and our other social media channels.

PDF copies of the articles are available for free by clicking on these links:

http://onlinelibrary.wiley.com/doi/10.1002/2015WR017349/abstract?campaign=wlytk-41855.5282060185

http://onlinelibrary.wiley.com/doi/10.1002/2015WR017351/abstract?campaign=wlytk-41855.5282060185

Or, you may order a copy of the final papers by emailing your request to Nanci Bompey at nbompey@agu.org. Please provide your name, the name of your publication, and your phone number.

Neither the papers nor this press release is under embargo.
Title
“Quantifying renewable groundwater stress with GRACE” and “Uncertainty in global groundwater storage estimates in a total groundwater stress framework”

Authors:

“Quantifying renewable groundwater stress with GRACE”

Alexandra S. Richey: Department of Civil & Environmental Engineering, University of California, Irvine, CA, USA;

Brian F. Thomas: NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA;

Min-Hui Lo: Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan;

John T. Reager: NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA;

James S. Famiglietti: Department of Civil & Environmental Engineering, University of California, Irvine, CA, USA; NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA; and Department of Earth System Science, University of California, Irvine, CA, USA;

Katalyn Voss: Department of Geography, University of California, Santa Barbara, CA, USA;

Sean Swenson: Climate and Global Dynamics Division, National Center for Atmospheric Research, Boulder, CO, USA;

Matthew Rodell: Hydrologic Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA.

“Uncertainty in global groundwater storage estimates in a total groundwater stress framework”

Alexandra S. Richey: Department of Civil & Environmental Engineering, University of California, Irvine, CA, USA;

Brian F. Thomas: NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA;

Min-Hui Lo: Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan;

James S. Famiglietti: Department of Civil & Environmental Engineering, University of California, Irvine, CA, USA; NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA; and Department of Earth System Science, University of California, Irvine, CA, USA;

Sean Swenson: Climate and Global Dynamics Division, National Center for Atmospheric Research, Boulder, CO, USA;

Matthew Rodell: Hydrologic Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA.

Jay Famiglietti, +1 (626) 755-7661, James.Famiglietti@jpl.nasa.gov


AGU Contact:
Nanci Bompey
+1 (202) 777-7524
nbompey@agu.org

University of California Irvine Contact:
Janet Wilson
+1 (949) 824-3969
janethw@uci.edu

NASA JPL Contact:
Alan Buis
+1 (818) 354-0474
alan.buis@jpl.nasa.gov

Nanci Bompey | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>