Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A third of the world’s biggest groundwater basins are in distress

17.06.2015

Reserves likely far smaller than previously thought, new studies find

Human consumption is rapidly draining about a third of its largest groundwater basins, despite having little to no accurate data about how much water remains in them, according to two new studies led by the University of California, Irvine, using data from NASA’s Gravity Recovery and Climate Experiment (GRACE) satellites.


Groundwater storage trends for Earth’s 37 largest aquifers from UCI-led study using NASA GRACE data (2003 – 2013). Of these, 21 have exceeded sustainability tipping points and are being depleted, with 13 considered significantly distressed, threatening regional water security and resilience. Credit: UC Irvine / NASA

The result is that significant segments of Earth’s population are consuming groundwater quickly without knowing when it might run out, the researchers conclude. The new findings have been accepted for publication in Water Resources Research, a journal of the American Geophysical Union, and appear online today.

“Available physical and chemical measurements are simply insufficient,” said University of California Irvine professor and principal investigator Jay Famiglietti, who is also the senior water scientist at NASA’s Jet Propulsion Laboratory. “Given how quickly we are consuming the world’s groundwater reserves, we need a coordinated global effort to determine how much is left.”

The studies are the first to characterize groundwater losses via data from space, using readings generated by NASA’s twin Gravity Recovery and Climate Experiment (GRACE) satellites that measure dips and bumps in Earth’s gravity, which is affected by the weight of water.

For the first paper, researchers examined the planet’s 37 largest aquifers between 2003 and 2013. The eight worst off were classified as overstressed, with nearly no natural replenishment to offset usage. Another five aquifers were found, in descending order, to be extremely or highly stressed, depending upon the level of replenishment in each – still in trouble but with some water flowing back into them.

The most overburdened are in the world’s driest areas, which draw heavily on underground water. Climate change and population growth are expected to intensify the problem.

“What happens when a highly stressed aquifer is located in a region with socioeconomic or political tensions that can’t supplement declining water supplies fast enough?” asked the lead author on both studies, Alexandra Richey, who conducted the research as a UCI doctoral student. “We’re trying to raise red flags now to pinpoint where active management today could protect future lives and livelihoods.”

The research team – which included co-authors from NASA, the National Center for Atmospheric Research, National Taiwan University and UC Santa Barbara – found that the Arabian Aquifer System, an important water source for more than 60 million people, is the most overstressed in the world.

The Indus Basin aquifer of northwestern India and Pakistan is the second-most overstressed, and the Murzuk-Djado Basin in northern Africa is third. California’s Central Valley, utilized heavily for agriculture and suffering rapid depletion, was slightly better off but still labeled highly stressed in the first study.

“As we’re seeing in California right now, we rely much more heavily on groundwater during drought,” Famiglietti said. “When examining the sustainability of a region’s water resources, we absolutely must account for that dependence.”

In a companion paper appearing online today in the same journal, the scientists conclude that the total remaining volume of the world’s usable groundwater is poorly known, with often widely varying estimates, but is likely far less than rudimentary estimates made decades ago.

By comparing their satellite-derived groundwater loss rates to what little data exists on groundwater availability, they found major discrepancies in projected “time to depletion.” In the overstressed Northwest Sahara Aquifer System, for example, this fluctuated between 10 and 21,000 years.

“We don’t actually know how much is stored in each of these aquifers. Estimates of remaining storage might vary from decades to millennia,” Richey said. “In a water-scarce society, we can no longer tolerate this level of uncertainty, especially since groundwater is disappearing so rapidly.”

The study notes that the dearth of groundwater is already leading to significant ecological damage, including depleted rivers, declining water quality and subsiding land.

Groundwater aquifers are typically located in soil or deeper rock layers beneath Earth’s surface. The depth and thickness of many make it tough and costly to drill to or otherwise reach bedrock and learn where the moisture bottoms out. But it has to be done, according to the authors.

###

The American Geophysical Union is dedicated to advancing the Earth and space sciences for the benefit of humanity through its scholarly publications, conferences, and outreach programs. AGU is a not-for-profit, professional, scientific organization representing more than 60,000 members in 139 countries. Join the conversation on Facebook, Twitter, YouTube, and our other social media channels.

PDF copies of the articles are available for free by clicking on these links:

http://onlinelibrary.wiley.com/doi/10.1002/2015WR017349/abstract?campaign=wlytk-41855.5282060185

http://onlinelibrary.wiley.com/doi/10.1002/2015WR017351/abstract?campaign=wlytk-41855.5282060185

Or, you may order a copy of the final papers by emailing your request to Nanci Bompey at nbompey@agu.org. Please provide your name, the name of your publication, and your phone number.

Neither the papers nor this press release is under embargo.
Title
“Quantifying renewable groundwater stress with GRACE” and “Uncertainty in global groundwater storage estimates in a total groundwater stress framework”

Authors:

“Quantifying renewable groundwater stress with GRACE”

Alexandra S. Richey: Department of Civil & Environmental Engineering, University of California, Irvine, CA, USA;

Brian F. Thomas: NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA;

Min-Hui Lo: Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan;

John T. Reager: NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA;

James S. Famiglietti: Department of Civil & Environmental Engineering, University of California, Irvine, CA, USA; NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA; and Department of Earth System Science, University of California, Irvine, CA, USA;

Katalyn Voss: Department of Geography, University of California, Santa Barbara, CA, USA;

Sean Swenson: Climate and Global Dynamics Division, National Center for Atmospheric Research, Boulder, CO, USA;

Matthew Rodell: Hydrologic Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA.

“Uncertainty in global groundwater storage estimates in a total groundwater stress framework”

Alexandra S. Richey: Department of Civil & Environmental Engineering, University of California, Irvine, CA, USA;

Brian F. Thomas: NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA;

Min-Hui Lo: Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan;

James S. Famiglietti: Department of Civil & Environmental Engineering, University of California, Irvine, CA, USA; NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA; and Department of Earth System Science, University of California, Irvine, CA, USA;

Sean Swenson: Climate and Global Dynamics Division, National Center for Atmospheric Research, Boulder, CO, USA;

Matthew Rodell: Hydrologic Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA.

Jay Famiglietti, +1 (626) 755-7661, James.Famiglietti@jpl.nasa.gov


AGU Contact:
Nanci Bompey
+1 (202) 777-7524
nbompey@agu.org

University of California Irvine Contact:
Janet Wilson
+1 (949) 824-3969
janethw@uci.edu

NASA JPL Contact:
Alan Buis
+1 (818) 354-0474
alan.buis@jpl.nasa.gov

Nanci Bompey | American Geophysical Union

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>