Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new species of marine fish from 408 million years ago discovered in Teruel

04.06.2013
Researchers from the University of Valencia and the Natural History Museum of Berlin have studied the fossilised remains of scales and bones found in Teruel and the south of Zaragoza, ascertaining that they belong to a new fish species called Machaeracanthus goujeti that lived in that area of the peninsula during the Devonian period. The fossils are part of the collection housed in the Palaeontology Museum of Zaragoza.
In the journal 'Geodiversitas', a research team led by the University of Valencia describes a new species of spiny shark (Acanthodii), a primitive type of fish that shared characteristics with sharks and bony fish.

Remains of scales, bones and scapular joint bones were found in Devonian (approximately 408 million years ago) in Teruel and the south of Zaragoza. The paper also includes an analysis of fossils of a fragmented spine and isolated scales from the Lower Devonian found in northern Spain (Palencia and Cantabrian Mountains) and western France (Saint-Céneré commune), originally attributed to the Machaeracanthus sp species.

"The discovery of this new species, which we call Machaeracanthus goujeti and belongs to the Acanthodii group –of which very little is known–, expands our knowledge of the biodiversity that existed on the peninsula 480 million years ago, when the modern-day region of Teruel was covered by the sea," Héctor Botella, professor in the palaeontology unit in the University of Valencia and the study's lead author, explained to SINC.

The Acanthodii group of fish are also known as 'spiny sharks' owing to their appearance and, from what we know to date, they only lived during the Palaeozoic Era and reached their maximum level of diversity in the Devonic period.

However, the bones typically found in the Acanthodii group grow differently to the bones found, therefore this type could be even more similar to sharks and would date from the very early stages of the radiation of jawed vertebrates (gnathostomata).

A fish fossil no more than one metre in length
The majority of the samples found by the researchers are juveniles. Based on the fossilised remains, the researchers estimate that the largest fish in this species would not reach one metre in length. "This is just an estimation because there are animals that can have large bones and be small, and vice versa," Botella stated.

For their part, the fossils found in the sediment layers of the Iberian mountain range must surely have belonged to fish that swam close to the coast. "In other words, they must have lived in an epicontinental sea –an extensive but shallow salt water mass–, and it is therefore possible that this area was used as a breeding ground," he concludes. Larger fossils were found in sediment layers a little further down.

The fossils form part of the collection housed in the Palaeontology Museum of Zaragoza.


References:
Héctor Botella, Carlos Martínez-Pérez, Rodrigo Soler-Gijón "Machaeracanthus goujeti n. sp. (Acanthodii) from the Lower Devonian of Spain and northwest France, with special reference to spine histology", Geodiversitas, 34(4):761-783, 2013.

SINC | EurekAlert!
Further information:
http://www.agenciasinc.es

Further reports about: Acanthodii Machaeracanthus goujeti Palaeontology Teruel Zaragoza new species

More articles from Earth Sciences:

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Shallow soils promote savannas in South America
20.10.2017 | Senckenberg Forschungsinstitut und Naturmuseen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>