Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A small wave of relief: Oxygen measured in the deep water of the Baltic Proper

08.08.2014

Recent readings of the IOW reveal: Oxygen-rich saltwater from the North Sea has entered the Central Baltic Sea and there, for the first time since 2003, has displaced hydrogen sulfide in the deep water.

After a long period of oxygen depletion and hydrogen sulfide formation in the deep water of the Central Baltic Sea (since 2003), saltwater being rich in oxygen has reached these submarine areas once again, as the results of the most recent measuring campaign of the Leibniz Institute for Baltic Sea Research in Rostock-Warnemünde now reveal.


Central Baltic Sea November 2013 – Situation before salt water inflow

(IOW)


Central Baltic Sea in July 2014 – Situation after salt water inflow

(IOW)

This slightly improves the living conditions of higher organisms in these regions which were often referred to as “dead zones”.

The last time a similar event has been observed was in November / December 2011. Back then, the deep water of the Southern Baltic Sea was not ventilated further than the Gdansk Basin. The recently measured inflowing salt water succeeded in progressing farther to the Northeast up to the Central Gotland Basin.

There,the bottom-near water layer in depths between 200 and 240 m was provided with oxygen while toxic hydrogen sulfide was removed. At the time of the measuring campaign, this inflow however did not yet reach the Northern part the Gotland Basin.

According to the Warnemünde scientists, two long-lasting phases of westerly winds in February and March 2014 have triggered these processes. The gauge data from February 3 – 20 and March 8 – 19 show minor wind-induced inflow events with estimated volumina of approximately 141 km³ and 203 km³, with the March event carrying the major volumes into the Baltic.

The scientific cruise from July 19 – 30, 2014 was one of five regular measurement campaigns per year which the IOW is conducting to monitor the state of the marine environment of the Baltic Sea. The campains follow a fixed station network reaching as far as to the Gotland Basin. Within the German EEZ, this is done on behalf of the Federal Maritime and Hydrographic Agency (BSH) which is responsible for the performance of the duties that the Federal Republic of Germany agreed upon in the Helsinki Convention.

The gained data are used as a foundation for regular assessments of the state of the Baltic Sea, both on national and international level, as well as for numerous other scientific publications. Besides, they provide the scientific basis for further measures planned to protect or restore the ecosystem of the Baltic Sea.

Contact:

Dr. Günther Nausch, Sektion Meereschemie, Arbeitsgruppe Allgemeine Meereschemie (Nährstoffanalytik), IOW
(Tel.: 0381 / 5197 332, Email: guenther.nausch@io-warnemuende.de)

Dr. Michael Naumann, Sektion Physikalische Ozeanographie und Messtechnik, IOW (Tel.: 0381 / 5197 267, Email: michael.naumann@io-warnemuende.de)

Nils Ehrenberg, Öffentlichkeitsarbeit, IOW
(Tel.: 0381 / 5197 106, Email: nils.ehrenberg@io-warnemuende.de)

Background information: salt water inflows

The water body of the Baltic Sea is permanently stratified with brackish surface water fed by the constant freshwater discharge of numerous rivers. This surface layer is in constant exchange with the atmosphere. It is well provided with oxygen by wind mixing, temperature-induced convection processes and the biological production. From a depth of approximately 70 m on, in areas which are no longer influenced by wind mixing, the Baltic Sea shows its close connection to the North Sea: it is here that the salty North Sea water concentrates which periodically flows into the Baltic Sea via the Danish Belt Sea, Being saltier than the Baltic Sea water, it is also heavier, thus it is flowing along the bottom of the Baltic Sea into the deep basins. Both water bodies do not mix but to a minor degree which causes a permanent stratification. Solid particles like dead organic matter can easily pass this boundary whereas gases dissolved in the water are hold back efficiently. The oxygen content of the deep water therefore constantly decreases as the oxygen is consumed during the decomposition of the deposited organic particles. When the oxygen is entirely depleted, toxic hydrogen sulfide forms. An improvement of this state can only be reached by the lateral supply with large amounts of North Sea water which has been in contact with the atmosphere and therefore is rich in oxygen.

Submarine sills in the Western Baltic Sea hamper this horizontal water exchange. Only under specific meteorological conditions, the salt water can pass these natural impediments to supply the eastern/central parts of the Baltic Sea with oxygen. These sills are the so called Darß Sill, an extended sandy plain between the Danish Island of Moen and the peninsula of Fischland-Darß-Zingst with water depths of 18 – 19 m, and the Drogden Sill being positioned in the Oere Sound between the Danish island Zealand and the Swedish mainland with water depths of only 8 – 9 m.

Since 2003, no major salt water inflow has occured, which has led to the fact that in the deep areas of the central Baltic Sea (>90 m) all oxygen has been consumed and an increased formation of hydrogen sulfide went on. Thus, the biological living conditions for higher organisms have strongly been limited in these areas, which therefore were often referred to as “dead zones” in the media.

Link to images in high resolution:

http://www.io-warnemuende.de/mitteilung/items/salzwassereinbruch-2014.html

Further material on demand

The IOW is a member of the Leibniz Association to which 89 research institutes and scientific infrastructure facilities for research currently belong. The focus of the Leibniz Institutes ranges from Natural, Engineering and Environmental Science to Economic, Social, and Space Sciences and to the humanities. The institutes are jointly financed at the state and national levels. The Leibniz Institutes employ a total of 17.200 people, of whom 8.200 are scientists, of which 3.300 are junior scientists. The total budget of the Institutes is more than 1.5 billion Euros. Third-party funds amount to approximately € 330 million per year. www.leibniz-gemeinschaft.de

Dr. Barbara Hentzsch | idw - Informationsdienst Wissenschaft

Further reports about: Baltic Basin IOW Leibniz-Institut Ostseeforschung Oxygen atmosphere

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Bodyguards in the gut have a chemical weapon

20.01.2017 | Life Sciences

SF State astronomer searches for signs of life on Wolf 1061 exoplanet

20.01.2017 | Physics and Astronomy

Treated carbon pulls radioactive elements from water

20.01.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>