Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A small wave of relief: Oxygen measured in the deep water of the Baltic Proper

08.08.2014

Recent readings of the IOW reveal: Oxygen-rich saltwater from the North Sea has entered the Central Baltic Sea and there, for the first time since 2003, has displaced hydrogen sulfide in the deep water.

After a long period of oxygen depletion and hydrogen sulfide formation in the deep water of the Central Baltic Sea (since 2003), saltwater being rich in oxygen has reached these submarine areas once again, as the results of the most recent measuring campaign of the Leibniz Institute for Baltic Sea Research in Rostock-Warnemünde now reveal.


Central Baltic Sea November 2013 – Situation before salt water inflow

(IOW)


Central Baltic Sea in July 2014 – Situation after salt water inflow

(IOW)

This slightly improves the living conditions of higher organisms in these regions which were often referred to as “dead zones”.

The last time a similar event has been observed was in November / December 2011. Back then, the deep water of the Southern Baltic Sea was not ventilated further than the Gdansk Basin. The recently measured inflowing salt water succeeded in progressing farther to the Northeast up to the Central Gotland Basin.

There,the bottom-near water layer in depths between 200 and 240 m was provided with oxygen while toxic hydrogen sulfide was removed. At the time of the measuring campaign, this inflow however did not yet reach the Northern part the Gotland Basin.

According to the Warnemünde scientists, two long-lasting phases of westerly winds in February and March 2014 have triggered these processes. The gauge data from February 3 – 20 and March 8 – 19 show minor wind-induced inflow events with estimated volumina of approximately 141 km³ and 203 km³, with the March event carrying the major volumes into the Baltic.

The scientific cruise from July 19 – 30, 2014 was one of five regular measurement campaigns per year which the IOW is conducting to monitor the state of the marine environment of the Baltic Sea. The campains follow a fixed station network reaching as far as to the Gotland Basin. Within the German EEZ, this is done on behalf of the Federal Maritime and Hydrographic Agency (BSH) which is responsible for the performance of the duties that the Federal Republic of Germany agreed upon in the Helsinki Convention.

The gained data are used as a foundation for regular assessments of the state of the Baltic Sea, both on national and international level, as well as for numerous other scientific publications. Besides, they provide the scientific basis for further measures planned to protect or restore the ecosystem of the Baltic Sea.

Contact:

Dr. Günther Nausch, Sektion Meereschemie, Arbeitsgruppe Allgemeine Meereschemie (Nährstoffanalytik), IOW
(Tel.: 0381 / 5197 332, Email: guenther.nausch@io-warnemuende.de)

Dr. Michael Naumann, Sektion Physikalische Ozeanographie und Messtechnik, IOW (Tel.: 0381 / 5197 267, Email: michael.naumann@io-warnemuende.de)

Nils Ehrenberg, Öffentlichkeitsarbeit, IOW
(Tel.: 0381 / 5197 106, Email: nils.ehrenberg@io-warnemuende.de)

Background information: salt water inflows

The water body of the Baltic Sea is permanently stratified with brackish surface water fed by the constant freshwater discharge of numerous rivers. This surface layer is in constant exchange with the atmosphere. It is well provided with oxygen by wind mixing, temperature-induced convection processes and the biological production. From a depth of approximately 70 m on, in areas which are no longer influenced by wind mixing, the Baltic Sea shows its close connection to the North Sea: it is here that the salty North Sea water concentrates which periodically flows into the Baltic Sea via the Danish Belt Sea, Being saltier than the Baltic Sea water, it is also heavier, thus it is flowing along the bottom of the Baltic Sea into the deep basins. Both water bodies do not mix but to a minor degree which causes a permanent stratification. Solid particles like dead organic matter can easily pass this boundary whereas gases dissolved in the water are hold back efficiently. The oxygen content of the deep water therefore constantly decreases as the oxygen is consumed during the decomposition of the deposited organic particles. When the oxygen is entirely depleted, toxic hydrogen sulfide forms. An improvement of this state can only be reached by the lateral supply with large amounts of North Sea water which has been in contact with the atmosphere and therefore is rich in oxygen.

Submarine sills in the Western Baltic Sea hamper this horizontal water exchange. Only under specific meteorological conditions, the salt water can pass these natural impediments to supply the eastern/central parts of the Baltic Sea with oxygen. These sills are the so called Darß Sill, an extended sandy plain between the Danish Island of Moen and the peninsula of Fischland-Darß-Zingst with water depths of 18 – 19 m, and the Drogden Sill being positioned in the Oere Sound between the Danish island Zealand and the Swedish mainland with water depths of only 8 – 9 m.

Since 2003, no major salt water inflow has occured, which has led to the fact that in the deep areas of the central Baltic Sea (>90 m) all oxygen has been consumed and an increased formation of hydrogen sulfide went on. Thus, the biological living conditions for higher organisms have strongly been limited in these areas, which therefore were often referred to as “dead zones” in the media.

Link to images in high resolution:

http://www.io-warnemuende.de/mitteilung/items/salzwassereinbruch-2014.html

Further material on demand

The IOW is a member of the Leibniz Association to which 89 research institutes and scientific infrastructure facilities for research currently belong. The focus of the Leibniz Institutes ranges from Natural, Engineering and Environmental Science to Economic, Social, and Space Sciences and to the humanities. The institutes are jointly financed at the state and national levels. The Leibniz Institutes employ a total of 17.200 people, of whom 8.200 are scientists, of which 3.300 are junior scientists. The total budget of the Institutes is more than 1.5 billion Euros. Third-party funds amount to approximately € 330 million per year. www.leibniz-gemeinschaft.de

Dr. Barbara Hentzsch | idw - Informationsdienst Wissenschaft

Further reports about: Baltic Basin IOW Leibniz-Institut Ostseeforschung Oxygen atmosphere

More articles from Earth Sciences:

nachricht Researchers find higher than expected carbon emissions from inland waterways
25.05.2016 | Washington State University

nachricht Rutgers scientists help create world's largest coral gene database
24.05.2016 | Rutgers University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

Im Focus: Transparent - Flexible - Printable: Key technologies for tomorrow’s displays

The trend-forward world of display technology relies on innovative materials and novel approaches to steadily advance the visual experience, for example through higher pixel densities, better contrast, larger formats or user-friendler design. Fraunhofer ISC’s newly developed materials for optics and electronics now broaden the application potential of next generation displays. Learn about lower cost-effective wet-chemical printing procedures and the new materials at the Fraunhofer ISC booth # 1021 in North Hall D during the SID International Symposium on Information Display held from 22 to 27 May 2016 at San Francisco’s Moscone Center.

Economical processing

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

LZH shows the potential of the laser for industrial manufacturing at the LASYS 2016

25.05.2016 | Trade Fair News

Great apes communicate cooperatively

25.05.2016 | Life Sciences

Thermo-Optical Measuring method (TOM) could save several million tons of CO2 in coal-fired plants

25.05.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>