Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A small wave of relief: Oxygen measured in the deep water of the Baltic Proper

08.08.2014

Recent readings of the IOW reveal: Oxygen-rich saltwater from the North Sea has entered the Central Baltic Sea and there, for the first time since 2003, has displaced hydrogen sulfide in the deep water.

After a long period of oxygen depletion and hydrogen sulfide formation in the deep water of the Central Baltic Sea (since 2003), saltwater being rich in oxygen has reached these submarine areas once again, as the results of the most recent measuring campaign of the Leibniz Institute for Baltic Sea Research in Rostock-Warnemünde now reveal.


Central Baltic Sea November 2013 – Situation before salt water inflow

(IOW)


Central Baltic Sea in July 2014 – Situation after salt water inflow

(IOW)

This slightly improves the living conditions of higher organisms in these regions which were often referred to as “dead zones”.

The last time a similar event has been observed was in November / December 2011. Back then, the deep water of the Southern Baltic Sea was not ventilated further than the Gdansk Basin. The recently measured inflowing salt water succeeded in progressing farther to the Northeast up to the Central Gotland Basin.

There,the bottom-near water layer in depths between 200 and 240 m was provided with oxygen while toxic hydrogen sulfide was removed. At the time of the measuring campaign, this inflow however did not yet reach the Northern part the Gotland Basin.

According to the Warnemünde scientists, two long-lasting phases of westerly winds in February and March 2014 have triggered these processes. The gauge data from February 3 – 20 and March 8 – 19 show minor wind-induced inflow events with estimated volumina of approximately 141 km³ and 203 km³, with the March event carrying the major volumes into the Baltic.

The scientific cruise from July 19 – 30, 2014 was one of five regular measurement campaigns per year which the IOW is conducting to monitor the state of the marine environment of the Baltic Sea. The campains follow a fixed station network reaching as far as to the Gotland Basin. Within the German EEZ, this is done on behalf of the Federal Maritime and Hydrographic Agency (BSH) which is responsible for the performance of the duties that the Federal Republic of Germany agreed upon in the Helsinki Convention.

The gained data are used as a foundation for regular assessments of the state of the Baltic Sea, both on national and international level, as well as for numerous other scientific publications. Besides, they provide the scientific basis for further measures planned to protect or restore the ecosystem of the Baltic Sea.

Contact:

Dr. Günther Nausch, Sektion Meereschemie, Arbeitsgruppe Allgemeine Meereschemie (Nährstoffanalytik), IOW
(Tel.: 0381 / 5197 332, Email: guenther.nausch@io-warnemuende.de)

Dr. Michael Naumann, Sektion Physikalische Ozeanographie und Messtechnik, IOW (Tel.: 0381 / 5197 267, Email: michael.naumann@io-warnemuende.de)

Nils Ehrenberg, Öffentlichkeitsarbeit, IOW
(Tel.: 0381 / 5197 106, Email: nils.ehrenberg@io-warnemuende.de)

Background information: salt water inflows

The water body of the Baltic Sea is permanently stratified with brackish surface water fed by the constant freshwater discharge of numerous rivers. This surface layer is in constant exchange with the atmosphere. It is well provided with oxygen by wind mixing, temperature-induced convection processes and the biological production. From a depth of approximately 70 m on, in areas which are no longer influenced by wind mixing, the Baltic Sea shows its close connection to the North Sea: it is here that the salty North Sea water concentrates which periodically flows into the Baltic Sea via the Danish Belt Sea, Being saltier than the Baltic Sea water, it is also heavier, thus it is flowing along the bottom of the Baltic Sea into the deep basins. Both water bodies do not mix but to a minor degree which causes a permanent stratification. Solid particles like dead organic matter can easily pass this boundary whereas gases dissolved in the water are hold back efficiently. The oxygen content of the deep water therefore constantly decreases as the oxygen is consumed during the decomposition of the deposited organic particles. When the oxygen is entirely depleted, toxic hydrogen sulfide forms. An improvement of this state can only be reached by the lateral supply with large amounts of North Sea water which has been in contact with the atmosphere and therefore is rich in oxygen.

Submarine sills in the Western Baltic Sea hamper this horizontal water exchange. Only under specific meteorological conditions, the salt water can pass these natural impediments to supply the eastern/central parts of the Baltic Sea with oxygen. These sills are the so called Darß Sill, an extended sandy plain between the Danish Island of Moen and the peninsula of Fischland-Darß-Zingst with water depths of 18 – 19 m, and the Drogden Sill being positioned in the Oere Sound between the Danish island Zealand and the Swedish mainland with water depths of only 8 – 9 m.

Since 2003, no major salt water inflow has occured, which has led to the fact that in the deep areas of the central Baltic Sea (>90 m) all oxygen has been consumed and an increased formation of hydrogen sulfide went on. Thus, the biological living conditions for higher organisms have strongly been limited in these areas, which therefore were often referred to as “dead zones” in the media.

Link to images in high resolution:

http://www.io-warnemuende.de/mitteilung/items/salzwassereinbruch-2014.html

Further material on demand

The IOW is a member of the Leibniz Association to which 89 research institutes and scientific infrastructure facilities for research currently belong. The focus of the Leibniz Institutes ranges from Natural, Engineering and Environmental Science to Economic, Social, and Space Sciences and to the humanities. The institutes are jointly financed at the state and national levels. The Leibniz Institutes employ a total of 17.200 people, of whom 8.200 are scientists, of which 3.300 are junior scientists. The total budget of the Institutes is more than 1.5 billion Euros. Third-party funds amount to approximately € 330 million per year. www.leibniz-gemeinschaft.de

Dr. Barbara Hentzsch | idw - Informationsdienst Wissenschaft

Further reports about: Baltic Basin IOW Leibniz-Institut Ostseeforschung Oxygen atmosphere

More articles from Earth Sciences:

nachricht Tracking the amount of sea ice from the Greenland ice sheet
28.09.2016 | Ca' Foscari University of Venice

nachricht A perfect sun-storm
28.09.2016 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

 
Latest News

New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development

28.09.2016 | Medical Engineering

Innovate coating extends the life of materials for industrial use

28.09.2016 | Materials Sciences

Blockchain Set to Transform the Financial Services Market

28.09.2016 | Business and Finance

VideoLinks
B2B-VideoLinks
More VideoLinks >>>