Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In a Scientific and Engineering Breakthrough, NSF-funded Team Samples Antarctic Lake Beneath the Ice Sheet

30.01.2013
Samples may contain microbes from an ecosystem isolated for thousands of years, with implications for the search for life elsewhere in extreme environments

In a first-of-its-kind feat of science and engineering, a National Science Foundation (NSF)-funded research team has successfully drilled through 800 meters (2,600 feet) of Antarctic ice to reach a subglacial lake and retrieve water and sediment samples that have been isolated from direct contact with the atmosphere for many thousands of years.


An image from the Whillans Ice Stream Subglacial Access Research Drilling project (WISSARD) borehole camera is shown. Credit: The Whillans Ice Stream Subglacial Access Research Drilling Project

Scientists and drillers with the interdisciplinary Whillans Ice Stream Subglacial Access Research Drilling project (WISSARD) announced Jan. 28 local time (U.S. stations in Antarctica keep New Zealand time) that they had used a customized clean hot-water drill to directly obtain samples from the waters and sediments of subglacial Lake Whillans.

The samples may contain microscopic life that has evolved uniquely to survive in conditions of extreme cold and lack of light and nutrients. Studying the samples may help scientists understand not only how life can survive in other extreme ecosystems on Earth, but also on other icy worlds in our solar system.

The WISSARD teams' accomplishment, the researchers said, "hails a new era in polar science, opening a window for future interdisciplinary science in one of Earth's last unexplored frontiers."

A massive ice sheet, almost two miles thick in places, covers more than 95 percent of the Antarctic continent. Only in recent decades have airborne and satellite radar and other mapping technologies revealed that a vast, subglacial system of rivers and lakes exists under the ice sheet. Lakes vary in size, with the largest being Vostok Subglacial Lake in the Antarctic interior that is comparable in size to Lake Ontario.

WISSARD targeted a smaller lake (1.2 square miles in area), where several lakes appear linked to each other and may drain to the ocean, as the first project to obtain clean, intact samples of water and sediments from a subglacial lake.

The achievement is the culmination of more than a decade of international and national planning and 3 1/2 years of project preparation by the WISSARD consortium of U.S. universities and two international contributors. There are 13 WISSARD principal investigators representing eight different U.S. institutions.

NSF, which manages the United States Antarctic Program, provided over $10 million in grants as part of NSF's International Polar Year portfolio to support the WISSARD science and development of related technologies.

The National Aeronautics and Space Administration's (NASA) Cryospheric Sciences Program, the National Oceanic and Atmospheric Administration (NOAA), and the private Gordon and Betty Moore Foundation also provided support for the project.

The interdisciplinary research team includes groups of experts in the following areas of science: life in icy environments, led by John Priscu, of Montana State University; glacial geology, led by Ross Powell, of Northern Illinois University; and glacial hydrology, led by Slawek Tulaczyk, of the University of California, Santa Cruz.

Sharing of expertise by the groups of disciplinary experts will allow the data collected to be cast in a systemic, global context.

The WISSARD team will now process the water and sediment samples they have collected in hopes of answering seminal questions related to the structure and function of subglacial microbial life, climate history and contemporary ice-sheet dynamics.

Video surveys of the lake floor and measurements of selected physical and chemical properties of the waters and sediments will allow the team to further characterize the lake and its environs.

The approach to drilling was guided by recommendations in the 2007 National Research Council-sponsored report, "Exploration of Antarctic Subglacial Aquatic Environments: Environmental and Scientific Stewardship," aimed to protect these unique environments from contamination.

A team of engineers and technicians directed by Frank Rack, of the University of Nebraska-Lincoln, designed, developed and fabricated the specialized hot-water drill that was fitted with a filtration and germicidal UV system to prevent contamination of the subglacial environment and to recover clean samples for microbial analyses. In addition, the numerous customized scientific samplers and instruments used for this project were also carefully cleaned before being lowered into the borehole through the ice and into the lake.

Following their successful retrieval, the samples are now being carefully prepared for their shipment off the ice and back to laboratories for numerous chemical and biological analyses over the coming weeks and months.

For b-roll from WISSARD drilling in Antarctica, contact Dena Headlee at (703) 292-7739 or dheadlee@nsf.gov

Media Contacts
Susan Kelly, Montana State University (406) 994-2515
Peter West, NSF (703) 292-7530 pwest@nsf.gov

Peter West | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Earth Sciences:

nachricht Large-Mouthed Fish Was Top Predator After Mass Extinction
26.07.2017 | Universität Zürich

nachricht Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds
25.07.2017 | University of Illinois at Urbana-Champaign

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>