Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How did a third radiation belt appear in the Earth's upper atmosphere?

21.06.2013
Since the discovery of the Van Allen radiation belts in in the Earth's upper atmosphere in 1958, space scientists have believed that these belts consisted of two doughnut-shaped rings of highly charged particles — an inner ring of high-energy electrons and energetic positive ions, and an outer ring of high-energy electrons.

However, in February of this year, a team of scientists reported in the journal Science the surprising discovery of a previously unknown third radiation ring. This narrow ring had briefly circled the Earth between the inner and outer rings in September 2012 and then almost completely disappeared.

How did this temporary radiation belt appear and dissipate?

In new research, the radiation belt group in the UCLA Department of Atmospheric and Oceanic Sciences explains the development of this third belt and its decay over a period of slightly more than four weeks. The research is available in the online edition of the journal Geophysical Research Letters and will be published in an upcoming print edition.

By performing a "quantitative treatment of the scattering of relativistic electrons by electromagnetic whistler-mode waves inside the dense plasmasphere," the investigators were able to account for the "distinctively slow decay of the injected relativistic electron flux" and demonstrate why this unusual third radiation belt is observed only at energies above 2 mega-electron-volts.

Understanding the processes that control the formation and ultimate loss of such relativistic electrons is a primary science objective of the NASA Van Allen Probe Mission and has important practical applications, because the enormous amounts of radiation the Van Allen belts generate can pose a significant hazard to satellites and spacecraft, as well to astronauts performing activities outside a spacecraft.

The current research was funded by the NASA, which launched the twin Van Allen probes in the summer of 2012.

The lead author of the research is Richard Thorne, a UCLA professor of atmospheric and oceanic sciences, who was a co-author of the Feb. 28 research paper in Science. Co-authors of the new research include Wen Li, a graduate student who works in Thorne's laboratory; Binbin Ni, a postdoctoral scholar who works in Thorne's laboratory; Jacob Bortnik, a researcher with the UCLA Department of Atmospheric and Oceanic Sciences; Daniel Baker, a professor at the University of Colorado's Laboratory for Atmospheric and Space Physics and lead author of the February Science paper; and Vassilis Angelopoulos, a UCLA professor of Earth and space sciences.

UCLA is California's largest university, with an enrollment of more than 40,000 undergraduate and graduate students. The UCLA College of Letters and Science and the university's 11 professional schools feature renowned faculty and offer 337 degree programs and majors. UCLA is a national and international leader in the breadth and quality of its academic, research, health care, cultural, continuing education and athletic programs. Six alumni and six faculty have been awarded the Nobel Prize.

For more news, visit the UCLA Newsroom and follow us on Twitter.

Stuart Wolpert | EurekAlert!
Further information:
http://www.ucla.edu

More articles from Earth Sciences:

nachricht Sea ice extent sinks to record lows at both poles
23.03.2017 | NASA/Goddard Space Flight Center

nachricht Less radiation in inner Van Allen belt than previously believed
21.03.2017 | DOE/Los Alamos National Laboratory

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>