Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Different Kind of Mine Disaster

14.04.2010
The world's largest antimony mine has become the world's largest laboratory for studying the environmental consequences of escaped antimony -- an element whose environmental and biological properties are still largely a mystery.

"Antimony is an emergent contaminant," said IU Bloomington Ph.D. student Faye Liu, the paper's lead author. "People have not paid enough attention to it."

Used in small quantities, antimony has a wide variety of applications -- from hardening the lead in bullets and improving battery performance to combating malaria.

Little is known about antimony's toxicity, in part because the metalloid element is usually found at low, parts-per-billion concentrations in natural environments. At Xikuangshan, Liu and her colleagues found that aqueous antimony concentrations could be as high 11 parts per million, 1,000 times the antimony levels found in uncontaminated water.

The alarming circumstances at Xikuangshan present an opportunity to understand what happens to antimony, geologically and chemically, when large quantities of it are introduced to the environment. That knowledge will be useful to investigations of antimony contamination near factories and military bases around the world.

The U.S. Environmental Protection Agency and similar regulatory agencies in Europe operate under the assumption that antimony's properties are similar to those of arsenic, another element in antimony's chemical group.

"That will need to change," said IU Bloomington geologist Chen Zhu, Liu's advisor and the project's principal investigator. "We saw that antimony behaves very differently from arsenic -- antimony oxidizes much more quickly than arsenic when exposed."

The vast majority of antimony the scientists isolated at Xikuangshan was of the "V" type, an oxidation state in which the metal has given up five electrons. It is believed V is the least toxic of the three oxidation states of which antimony is capable (I, III and V). It is not known whether antimony-V's relatively diminished toxicity is upended at Xikuangshan by its overwhelming presence.

Land within and around the mining area is used for farming. The drinking water plant for local residents was built in the mining area. Zhu says health problems are common at Xikuangshan, possibly the result of antimony intoxication.

Zhu says he is discussing a possible collaboration with IU School of Medicine toxicologist Jim Klaunig. Researchers would return to Xikuangshan to determine whether the elevated antimony can be tied to acute and chronic health problems among those who live in the vicinity. Another possible study group might be those Chinese who live downstream of Xikuangshan along the Qing River.

As part of their Environmental Geochemistry and Health study, Zhu and scientists from the Chinese Academy of Sciences conducted field work at Xikuangshan in 2007, drawing multiple water samples from 18 different sample sites. Samples were shipped back to Bloomington for atomic fluorescence spectroscopic analysis and to Alberta for inductively coupled plasma mass spectroscopy analysis. The scientists learned antimony-III was rare, beyond detection or present at trace levels. The near totality of antimony in each water sample was antimony-V.

The Xikuangshan antimony mine is the world's largest. Since antimony mining began there more than 200 years ago, mine production has increased steadily to the present day. Today, Xikuangshan produces 60 percent of the world's antimony.

While Zhu was on sabbatical leave in 2008, Faye Liu was advised by IU Bloomington biogeochemist and inaugural Provost's Professor Lisa Pratt. Zhu and Pratt recently began a joint project to learn more about the biogeochemistry of antimony. The scientists' antimony research complements their concurrent NSF-funded research on arsenic.

IU Bloomington geologists Claudia Johnson and Erika Elswick, both participants in the Environmental Geochemistry and Health study, have also taken seawater samples from the Caribbean. Liu is investigating the samples' antimony content.

Also contributing to the research were University of Alberta environmental toxicologist X. Chris Le and his students, Anthony McKnight-Whitford (Ph.D.) and Yunlong Xia (M.S.), and Chinese Academy of Sciences geochemist Fengchang Wu. The research was supported by the China Scholarship Council and Indiana University.

To speak with Zhu or Liu, please contact David Bricker, University Communications, at 812-856-9035 or brickerd@indiana.edu.

"Antimony speciation and contamination of waters in the Xikuangshan antimony mining and smelting area, China," Environmental Geochemistry and Health, by Faye Liu, X. Chris Le, Anthony McKnight-Whitford, Yunlong Xia, Fengchang Wu, Erika Elswick, Claudia C. Johnson, and Chen Zhu (early access online)

David Bricker | Newswise Science News
Further information:
http://www.indiana.edu

More articles from Earth Sciences:

nachricht Heidelberg Researchers Study Unique Underwater Stalactites
24.11.2017 | Universität Heidelberg

nachricht Lightning, with a chance of antimatter
24.11.2017 | Kyoto University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>