Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Different Kind of Mine Disaster

14.04.2010
The world's largest antimony mine has become the world's largest laboratory for studying the environmental consequences of escaped antimony -- an element whose environmental and biological properties are still largely a mystery.

"Antimony is an emergent contaminant," said IU Bloomington Ph.D. student Faye Liu, the paper's lead author. "People have not paid enough attention to it."

Used in small quantities, antimony has a wide variety of applications -- from hardening the lead in bullets and improving battery performance to combating malaria.

Little is known about antimony's toxicity, in part because the metalloid element is usually found at low, parts-per-billion concentrations in natural environments. At Xikuangshan, Liu and her colleagues found that aqueous antimony concentrations could be as high 11 parts per million, 1,000 times the antimony levels found in uncontaminated water.

The alarming circumstances at Xikuangshan present an opportunity to understand what happens to antimony, geologically and chemically, when large quantities of it are introduced to the environment. That knowledge will be useful to investigations of antimony contamination near factories and military bases around the world.

The U.S. Environmental Protection Agency and similar regulatory agencies in Europe operate under the assumption that antimony's properties are similar to those of arsenic, another element in antimony's chemical group.

"That will need to change," said IU Bloomington geologist Chen Zhu, Liu's advisor and the project's principal investigator. "We saw that antimony behaves very differently from arsenic -- antimony oxidizes much more quickly than arsenic when exposed."

The vast majority of antimony the scientists isolated at Xikuangshan was of the "V" type, an oxidation state in which the metal has given up five electrons. It is believed V is the least toxic of the three oxidation states of which antimony is capable (I, III and V). It is not known whether antimony-V's relatively diminished toxicity is upended at Xikuangshan by its overwhelming presence.

Land within and around the mining area is used for farming. The drinking water plant for local residents was built in the mining area. Zhu says health problems are common at Xikuangshan, possibly the result of antimony intoxication.

Zhu says he is discussing a possible collaboration with IU School of Medicine toxicologist Jim Klaunig. Researchers would return to Xikuangshan to determine whether the elevated antimony can be tied to acute and chronic health problems among those who live in the vicinity. Another possible study group might be those Chinese who live downstream of Xikuangshan along the Qing River.

As part of their Environmental Geochemistry and Health study, Zhu and scientists from the Chinese Academy of Sciences conducted field work at Xikuangshan in 2007, drawing multiple water samples from 18 different sample sites. Samples were shipped back to Bloomington for atomic fluorescence spectroscopic analysis and to Alberta for inductively coupled plasma mass spectroscopy analysis. The scientists learned antimony-III was rare, beyond detection or present at trace levels. The near totality of antimony in each water sample was antimony-V.

The Xikuangshan antimony mine is the world's largest. Since antimony mining began there more than 200 years ago, mine production has increased steadily to the present day. Today, Xikuangshan produces 60 percent of the world's antimony.

While Zhu was on sabbatical leave in 2008, Faye Liu was advised by IU Bloomington biogeochemist and inaugural Provost's Professor Lisa Pratt. Zhu and Pratt recently began a joint project to learn more about the biogeochemistry of antimony. The scientists' antimony research complements their concurrent NSF-funded research on arsenic.

IU Bloomington geologists Claudia Johnson and Erika Elswick, both participants in the Environmental Geochemistry and Health study, have also taken seawater samples from the Caribbean. Liu is investigating the samples' antimony content.

Also contributing to the research were University of Alberta environmental toxicologist X. Chris Le and his students, Anthony McKnight-Whitford (Ph.D.) and Yunlong Xia (M.S.), and Chinese Academy of Sciences geochemist Fengchang Wu. The research was supported by the China Scholarship Council and Indiana University.

To speak with Zhu or Liu, please contact David Bricker, University Communications, at 812-856-9035 or brickerd@indiana.edu.

"Antimony speciation and contamination of waters in the Xikuangshan antimony mining and smelting area, China," Environmental Geochemistry and Health, by Faye Liu, X. Chris Le, Anthony McKnight-Whitford, Yunlong Xia, Fengchang Wu, Erika Elswick, Claudia C. Johnson, and Chen Zhu (early access online)

David Bricker | Newswise Science News
Further information:
http://www.indiana.edu

More articles from Earth Sciences:

nachricht Supercomputing helps researchers understand Earth's interior
23.05.2017 | University of Illinois College of Liberal Arts & Sciences

nachricht How is climate change affecting fauna in the Arctic?
22.05.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>