Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new kind of metal in the deep Earth

20.12.2011
The crushing pressures and intense temperatures in Earth's deep interior squeeze atoms and electrons so closely together that they interact very differently. With depth materials change.

New experiments and supercomputer computations discovered that iron oxide undergoes a new kind of transition under deep Earth conditions. Iron oxide, FeO, is a component of the second most abundant mineral at Earth's lower mantle, ferropericlase.

The finding, published in an upcoming issue of Physical Review Letters, could alter our understanding of deep Earth dynamics and the behavior of the protective magnetic field, which shields our planet from harmful cosmic rays.

Ferropericlase contains both magnesium and iron oxide. To imitate the extreme conditions in the lab, the team including coauthor Ronald Cohen of Carnegie's Geophysical Laboratory, studied the electrical conductivity of iron oxide to pressures and temperatures up to 1.4 million times atmospheric pressure and 4000°F—on par with conditions at the core-mantle boundary. They also used a new computational method that uses only fundamental physics to model the complex many-body interactions among electrons. The theory and experiments both predict a new kind of metallization in FeO.

Compounds typically undergo structural, chemical, electronic, and other changes under these extremes. Contrary to previous thought, the iron oxide went from an insulating (non-electrical conducting) state to become a highly conducting metal at 690,000 atmospheres and 3000°F, but without a change to its structure. Previous studies had assumed that metallization in FeO was associated with a change in its crystal structure. This result means that iron oxide can be both an insulator and a metal depending on temperature and pressure conditions.

"At high temperatures, the atoms in iron oxide crystals are arranged with the same structure as common table salt, NaCl," explained Cohen. "Just like table salt, FeO at ambient conditions is a good insulator—it does not conduct electricity. Older measurements showed metallization in FeO at high pressures and temperatures, but it was thought that a new crystal structure formed. Our new results show, instead, that FeO metallizes without any change in structure and that combined temperature and pressure are required. Furthermore, our theory shows that the way the electrons behave to make it metallic is different from other materials that become metallic."

"The results imply that iron oxide is conducting in the whole range of its stability in Earth's lower mantle." Cohen continues, "The metallic phase will enhance the electromagnetic interaction between the liquid core and lower mantle. This has implications for Earth's magnetic field, which is generated in the outer core. It will change the way the magnetic field is propagated to Earth's surface, because it provides magnetomechanical coupling between the Earth's mantle and core."

"The fact that one mineral has properties that differ so completely—depending on its composition and where it is within the Earth—is a major discovery," concluded Geophysical Laboratory director Russell Hemley.

The Carnegie Institution for Science (carnegiescience.edu) is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Ronald Cohen | EurekAlert!
Further information:
http://www.carnegiescience.edu

More articles from Earth Sciences:

nachricht Sediment from Himalayas may have made 2004 Indian Ocean earthquake more severe
26.05.2017 | Oregon State University

nachricht Devils Hole: Ancient Traces of Climate History
24.05.2017 | Universität Innsbruck

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>