Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A human-caused climate change signal emerges from the noise

30.11.2012
By comparing simulations from 20 different computer models to satellite observations, Lawrence Livermore climate scientists and colleagues from 16 other organizations have found that tropospheric and stratospheric temperature changes are clearly related to human activities.

The team looked at geographical patterns of atmospheric temperature change over the period of satellite observations. The team's goal of the study was to determine whether previous findings of a "discernible human influence" on tropospheric and stratospheric temperature were sensitive to current uncertainties in climate models and satellite data.

The troposphere is the lowest portion of earth's atmosphere. The stratosphere sits just above the troposphere, between 6 and 30 miles above earth's surface.

The satellite temperature data sets were produced by three different research groups, and rely on measurements of the microwave emissions of oxygen molecules. Each group made different choices in processing these raw measurements, and in accounting for such complex effects as drifts in satellite orbits and in instrument calibrations.

The new climate model simulations analyzed by the team will form the scientific backbone of the upcoming 5th assessment of the Intergovernmental Panel on Climate Change, which is due out in 2014.

In both satellite observations and the computer model simulations of historical climate change, the lower stratosphere cools markedly over the past 33 years. This cooling is primarily a response to the human-caused depletion of stratospheric ozone. The observations and model simulations also show a common pattern of large-scale warming of the lower troposphere, with largest warming over the Arctic, and muted warming (or even cooling) over Antarctica. Tropospheric warming is mainly driven by human-caused increases in well-mixed greenhouse gases.

"It's very unlikely that purely natural causes can explain these distinctive patterns of temperature change," said Laboratory atmospheric scientist Benjamin Santer, who is lead author of the paper appearing in the Nov. 29 online edition of the journal, Proceedings of the National Academy of Sciences. "No known mode of natural climate variability can cause sustained, global-scale warming of the troposphere and cooling of the lower stratosphere."

The team analyzed results from climate model simulations with specified historical changes in human and natural external factors, and from simulations with projected 21st century changes in greenhouse gases and anthropogenic aerosols. They also looked at simulations with no changes in external influences on climate, which provide information on the year-to-year and decade-to-decade "noise" of internal climate variability, arising from such natural phenomena as the El Niño/Southern Oscillation and the Pacific Decadal Oscillation.

The team used a standard "climate fingerprint" method to search for the model signal pattern (in response to human influences, the sun and volcanoes) in the satellite observations. The method quantifies the strength of the signal in observations, relative to the strength of the signal in natural climate noise.

Other contributors include researchers from Remote Sensing Systems of Santa Rosa; the Centre for Australian Weather and Climate Research, Melbourne, Australia; the Canadian Centre for Climate Modeling and Analysis, Victoria, Canada; the National Oceanic and Atmospheric Administration (NOAA) Geophysical Fluid Dynamics Laboratory, Princeton; the University of Colorado, Boulder; the Massachusetts Institute of Technology, Cambridge; the U.K. Met. Office Hadley Centre, Exeter, U.K.; the Centre National de la Recherche Scientifique, Toulouse, France; North Carolina State University; the National Climatic Data Center, Asheville; Lawrence Berkeley National Laboratory; the National Center for Atmospheric Research, Boulder; the University of Adelaide, South Australia; the University of Reading, U.K.; and the Center for Satellite Applications and Research, Camp Springs. The paper is Santer's inaugural article as a member of the U.S. National Academy of Sciences.

Founded in 1952, Lawrence Livermore National Laboratory provides solutions to our nation's most important national security challenges through innovative science, engineering and technology. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

Anne Stark | EurekAlert!
Further information:
http://www.llnl.gov

More articles from Earth Sciences:

nachricht NASA sees Gonzalo affect Bermuda's ocean sediment: Stirred, not shaken
22.10.2014 | NASA/Goddard Space Flight Center

nachricht NASA's Aqua satellite sees Tropical Storm Ana still affecting Hawaii
22.10.2014 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Anzeige

Anzeige

Event News

Comparing Apples and Oranges? A Colloquium on International Comparative Urban Research

22.10.2014 | Event News

Battery Conference April 2015 in Aachen

16.10.2014 | Event News

Experts discuss new developments in the field of stem cell research and cell therapy

10.10.2014 | Event News

 
Latest News

Earliest modern human sequenced

22.10.2014 | Life Sciences

Continuous slab caster from Siemens receives FAC from Maanshan

22.10.2014 | Press release

'Shrinking goats' another indicator that climate change affects animal size

22.10.2014 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>