Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A human-caused climate change signal emerges from the noise

30.11.2012
By comparing simulations from 20 different computer models to satellite observations, Lawrence Livermore climate scientists and colleagues from 16 other organizations have found that tropospheric and stratospheric temperature changes are clearly related to human activities.

The team looked at geographical patterns of atmospheric temperature change over the period of satellite observations. The team's goal of the study was to determine whether previous findings of a "discernible human influence" on tropospheric and stratospheric temperature were sensitive to current uncertainties in climate models and satellite data.

The troposphere is the lowest portion of earth's atmosphere. The stratosphere sits just above the troposphere, between 6 and 30 miles above earth's surface.

The satellite temperature data sets were produced by three different research groups, and rely on measurements of the microwave emissions of oxygen molecules. Each group made different choices in processing these raw measurements, and in accounting for such complex effects as drifts in satellite orbits and in instrument calibrations.

The new climate model simulations analyzed by the team will form the scientific backbone of the upcoming 5th assessment of the Intergovernmental Panel on Climate Change, which is due out in 2014.

In both satellite observations and the computer model simulations of historical climate change, the lower stratosphere cools markedly over the past 33 years. This cooling is primarily a response to the human-caused depletion of stratospheric ozone. The observations and model simulations also show a common pattern of large-scale warming of the lower troposphere, with largest warming over the Arctic, and muted warming (or even cooling) over Antarctica. Tropospheric warming is mainly driven by human-caused increases in well-mixed greenhouse gases.

"It's very unlikely that purely natural causes can explain these distinctive patterns of temperature change," said Laboratory atmospheric scientist Benjamin Santer, who is lead author of the paper appearing in the Nov. 29 online edition of the journal, Proceedings of the National Academy of Sciences. "No known mode of natural climate variability can cause sustained, global-scale warming of the troposphere and cooling of the lower stratosphere."

The team analyzed results from climate model simulations with specified historical changes in human and natural external factors, and from simulations with projected 21st century changes in greenhouse gases and anthropogenic aerosols. They also looked at simulations with no changes in external influences on climate, which provide information on the year-to-year and decade-to-decade "noise" of internal climate variability, arising from such natural phenomena as the El Niño/Southern Oscillation and the Pacific Decadal Oscillation.

The team used a standard "climate fingerprint" method to search for the model signal pattern (in response to human influences, the sun and volcanoes) in the satellite observations. The method quantifies the strength of the signal in observations, relative to the strength of the signal in natural climate noise.

Other contributors include researchers from Remote Sensing Systems of Santa Rosa; the Centre for Australian Weather and Climate Research, Melbourne, Australia; the Canadian Centre for Climate Modeling and Analysis, Victoria, Canada; the National Oceanic and Atmospheric Administration (NOAA) Geophysical Fluid Dynamics Laboratory, Princeton; the University of Colorado, Boulder; the Massachusetts Institute of Technology, Cambridge; the U.K. Met. Office Hadley Centre, Exeter, U.K.; the Centre National de la Recherche Scientifique, Toulouse, France; North Carolina State University; the National Climatic Data Center, Asheville; Lawrence Berkeley National Laboratory; the National Center for Atmospheric Research, Boulder; the University of Adelaide, South Australia; the University of Reading, U.K.; and the Center for Satellite Applications and Research, Camp Springs. The paper is Santer's inaugural article as a member of the U.S. National Academy of Sciences.

Founded in 1952, Lawrence Livermore National Laboratory provides solutions to our nation's most important national security challenges through innovative science, engineering and technology. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

Anne Stark | EurekAlert!
Further information:
http://www.llnl.gov

More articles from Earth Sciences:

nachricht For a rare prairie orchid, science is making climate change local
12.02.2016 | USDA Forest Service - Northern Research Station

nachricht NASA sees Tropical Cyclone Winston form
12.02.2016 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Production of an AIDS vaccine in algae

Today, plants and microorganisms are heavily used for the production of medicinal products. The production of biopharmaceuticals in plants, also referred to as “Molecular Pharming”, represents a continuously growing field of plant biotechnology. Preferred host organisms include yeast and crop plants, such as maize and potato – plants with high demands. With the help of a special algal strain, the research team of Prof. Ralph Bock at the Max Planck Institute of Molecular Plant Physiology in Potsdam strives to develop a more efficient and resource-saving system for the production of medicines and vaccines. They tested its practicality by synthesizing a component of a potential AIDS vaccine.

The use of plants and microorganisms to produce pharmaceuticals is nothing new. In 1982, bacteria were genetically modified to produce human insulin, a drug...

Im Focus: The most accurate optical single-ion clock worldwide

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock which attains an accuracy which had only been predicted theoretically so far. Their optical ytterbium clock achieved a relative systematic measurement uncertainty of 3 E-18. The results have been published in the current issue of the scientific journal "Physical Review Letters".

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock...

Im Focus: Goodbye ground control: autonomous nanosatellites

The University of Würzburg has two new space projects in the pipeline which are concerned with the observation of planets and autonomous fault correction aboard satellites. The German Federal Ministry of Economic Affairs and Energy funds the projects with around 1.6 million euros.

Detecting tornadoes that sweep across Mars. Discovering meteors that fall to Earth. Investigating strange lightning that flashes from Earth's atmosphere into...

Im Focus: Flow phenomena on solid surfaces: Physicists highlight key role played by boundary layer velocity

Physicists from Saarland University and the ESPCI in Paris have shown how liquids on solid surfaces can be made to slide over the surface a bit like a bobsleigh on ice. The key is to apply a coating at the boundary between the liquid and the surface that induces the liquid to slip. This results in an increase in the average flow velocity of the liquid and its throughput. This was demonstrated by studying the behaviour of droplets on surfaces with different coatings as they evolved into the equilibrium state. The results could prove useful in optimizing industrial processes, such as the extrusion of plastics.

The study has been published in the respected academic journal PNAS (Proceedings of the National Academy of Sciences of the United States of America).

Im Focus: New study: How stable is the West Antarctic Ice Sheet?

Exceeding critical temperature limits in the Southern Ocean may cause the collapse of ice sheets and a sharp rise in sea levels

A future warming of the Southern Ocean caused by rising greenhouse gas concentrations in the atmosphere may severely disrupt the stability of the West...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Symposium on Climate Change Adaptation in Africa 2016

12.02.2016 | Event News

Travel grants available: Meet the world’s most proficient mathematicians and computer scientists

09.02.2016 | Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

 
Latest News

LIGO confirms RIT's breakthrough prediction of gravitational waves

12.02.2016 | Physics and Astronomy

Gene switch may repair DNA and prevent cancer

12.02.2016 | Life Sciences

Using 'Pacemakers' in spinal cord injuries

12.02.2016 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>