Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new global warming culprit: Dam drawdowns

08.08.2012
Methane emissions jump dramatically
Washington State University researchers have documented an underappreciated suite of players in global warming: dams, the water reservoirs behind them, and surges of greenhouse gases as water levels go up and down.

Bridget Deemer, a doctoral student at Washington State University-Vancouver, measured dissolved gases in the water column of Lacamas Lake in Clark County and found methane emissions jumped 20-fold when the water level was drawn down. A fellow WSU-Vancouver student, Maria Glavin, sampled bubbles rising from the lake mud and measured a 36-fold increase in methane during a drawdown.

Methane is 25 times more effective than carbon dioxide at trapping heat in the atmosphere. And while dams and the water behind them cover only a small portion of the earth's surface, they harbor biological activity that can produce large amounts of greenhouse gases. There are also some 80,000 dams in the United States alone, according to the U.S. Army Corps of Engineers National Inventory of Dams.

"Reservoirs have typically been looked at as a green energy source," says Deemer. "But their role in greenhouse gas emissions has been overlooked."

Deemer and Glavin's findings will be on display this week in a poster session at the national meeting of the Ecological Society of America in Portland.

Their efforts are part of a larger attempt to appreciate the role of lakes, reservoirs and streams in releasing greenhouse gases. A study published last year in the journal Science conservatively estimated that the ability of terrestrial ecosystems to act as carbon sinks, storing greenhouse gases, could be one-fourth less than estimated once emissions from reservoirs are considered.

The WSU-Vancouver work is the first to actually demonstrate and quantify the relationship between water-level drawdowns and greenhouse gas releases, says John Harrison, Deemer and Glavin's advisor and an assistant professor of Earth and Environmental Sciences.

The research could lead to different ways of managing drawdowns, he says, as emissions may be higher in summer months, when warmer temperatures and low oxygen conditions in bottom waters stimulate the microbial activity that produces greenhouse gases.

"We have the ability to manage the timing, magnitude and speed of reservoir drawdowns, which all could play a role in how much methane gets released to the atmosphere," Harrison says.

Managers can also consider the optimal time to take out a dam, Deemer says. While a dam removal may lead to some greenhouse gas emissions initially, she says it will be a one-time occurrence, while emissions can recur with regular drawdowns. The ability of soils and plants to store greenhouse gases could also make reservoir decommissioning a net sink, she says, but researchers "simply don't know at this point."

With Army Corps of Engineers funding, Deemer now plans to look at three other reservoirs in Oregon and northern California's Klamath basin.

Eric Sorensen | EurekAlert!
Further information:
http://www.wsu.edu

More articles from Earth Sciences:

nachricht From volcano's slope, NASA instrument looks sky high and to the future
27.04.2017 | NASA/Goddard Space Flight Center

nachricht Penn researchers quantify the changes that lightning inspires in rock
27.04.2017 | University of Pennsylvania

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>