Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A glimpse at the Earth's crust deep below the Atlantic

13.11.2009
Oceanic core complexes

Long-term variations in volcanism help explain the birth, evolution and death of striking geological features called oceanic core complexes on the ocean floor, says geologist Dr Bram Murton of the National Oceanography Centre, Southampton.

Oceanic core complexes are associated with faults along slow-spreading mid-ocean ridges. They are large elevated massifs with flat or gently curved upper surfaces and prominent corrugations called 'megamullions'. Uplifting during their formation causes exposure of lower crust and mantle rocks on the seafloor.

Murton was member of a scientific team that in 2007 sailed to the mid Atlantic Ridge aboard the royal research ship RRS James Cook to study the Earth's crust below the ocean.

"We wanted to know why some faults develop into core complexes, whereas others don't," he says: "It had been suggested that core complexes form during periods of reduced magma supply from volcanism, but exactly how this would interact with the tectonic forces that deform the Earth's crust was unclear."

Using the deep-towed vehicle TOBI equipped with sophisticated sonar equipment for profiling the deep seafloor, Murton and his colleagues discovered three domed and corrugated massifs, from which they dredged and drilled rock samples.

"These massifs turned out to be oceanic core complexes at different stages of a common life cycle," says Murton: "By comparing them we are able to get a much better understanding of the birth, evolution and death of these fascinating geological features."

It turns out that there is indeed a close link between core complex formation and long-term variations in magma supply. "Core complex development may take a million years or so and is associated with suppressed or absent volcanism," says Murton.

Faults that initiate core complex formation start off pretty much like normal faults around them. But in the absence of sufficient magma, the two sides of the fault continue to slip, and this slippage is further lubricated by seawater penetration and talc formation along the fault zones, leading to deep and large off-set faulting.

However, renewed volcanism can increase the supply of magma, overwhelming the fault. "We believe that renewed or increased volcanism is what eventually terminates the process of core complex formation." says Murton.

Contact information:

For more information contact the NOCS Press Officer Dr Rory Howlett on +44 (0)23 8059 8490 Email: r.howlett@noc.soton.ac.uk

The study was funded by the UK's Natural Environment Research Council.

The researchers are Chris MacLeod (Cardiff University), Roger Searle (Durham University), Bramley Murton (NOCS), John Casey (University of Houston), Chris Mallows (Durham University), Samantha Unsworth (NOCS), Kay Achenbach (Durham University) and Michelle Harris (NOCS).

Publication:

MacLeod, C. et al. Life cycle of oceanic core complexes. Earth and Planetary Science Letters 283, 333-344 (2009).

The National Oceanography Centre, Southampton is the UK's focus for ocean science. It is one of the world's leading institutions devoted to research, teaching and technology development in ocean and earth science. Over 500 research scientists, lecturing, support and seagoing staff are based at the centre's purpose-built waterside campus in Southampton along with over 700 undergraduate and postgraduate students.

The National Oceanography Centre, Southampton is a collaboration between the University of Southampton and the Natural Environment Research Council. The NERC royal research ships RRS James Cook and RRS Discovery are based at NOCS as is the National Marine Equipment Pool which includes Autosub and Isis, two of the world's deepest diving research vehicles.

Dr. Rory Howlett | EurekAlert!
Further information:
http://www.soton.ac.uk

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

A better way to measure the stiffness of cancer cells

01.03.2017 | Health and Medicine

Exploring the mysteries of supercooled water

01.03.2017 | Physics and Astronomy

Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth

01.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>