Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A double-satellite NASA-style view of the first tropical storm in eastern Pacific: Adrian

09.06.2011
The first tropical depression in the Eastern Pacific Ocean is now the first tropical storm, and two satellites are providing NASA insights into its thunderstorms, rainfall, and intensity. NASA satellite data on newly born Tropical Storm Adrian shows high cloud tops and moderate rainfall, indications that the storm is getting stronger, triggering a tropical storm watch in Mexico.

Tropical Depression 1E is the first tropical depression of 2011 and formed in the eastern Pacific Ocean early on June 7. By the morning of June 8 it had strengthened into Tropical Storm Adrian, and is now forecast by the National Hurricane Center to reach hurricane strength.


This infrared image of Tropical Storm Adrian was taken from the GOES-11 satellite on June 8 at 12:00 UTC (8:00 a.m. EDT) and shows a compact, rounded storm off the western Mexico coast. The image reveals that Adrian has some higher, stronger thunderstorms in the center that are casting shadows on lower clouds around them. Credit: Credit: NASA/NOAA GOES Project, Dennis Chesters

This morning, the government of Mexico posted a tropical storm watch for the Mexican coast from Acapulco, west to Punta San Telmo. That means conditions are possible in the watch area from 24 to 48 hours. Meanwhile, rough surf and rip currents can be expected in the southwestern Mexican coast later today.

When the Geostationary Operational Environmental Satellite called GOES-11 passed over Tropical Storm Adrian earlier today, June 8 at 12:00 UTC (8:00 a.m. EDT), an infrared image shows Adrian as a compact, rounded storm off the western Mexico coast. GOES satellites are managed by NOAA, and images and animations are created at NASA's Goddard Space Flight Center in Greenbelt, Md. by the NASA/NOAA GOES Project.

The GOES-11 image revealed that Adrian has some higher, stronger thunderstorms around the center of circulation that are casting shadows on lower clouds around them. Those higher thunderstorms are stronger than the surrounding thunderstorms, and are likely dropping heavy rainfall (as much as 2 inches/50 mm per hour). The higher thunderstorms are also a sign that the storm continues to strengthen.

Rainfall within Adrian was captured yesterday, June 7 at 0727 UTC (3:27 a.m. EDT), when it was still Tropical Depression 1E. That's when the Tropical Rainfall Measuring Mission (TRMM) satellite flew overhead. TRMM is like a flying rain gauge in space because its precipitation radar instrument can measure rainfall rates. At that time TRMM noticed that Tropical Depression 1E had moderate rainfall surrounding its low level center. Moderate rainfall rates are between .78 to 1.57 inches (20 to 40 mm) per hour.

Adrian was already close to hurricane strength this morning, June 8. At 8 a.m. PDT (11 a.m. EDT), Adrian's maximum sustained winds were near 70 mph (110 kmh. It was about 285 miles (455 km) south-southwest of Acapulco, Mexico near 12.9 North and 100.8 West, and moving north-northwest near 5 mph (7 kmh). Minimum central pressure was 994 millibars.

The National Hurricane Center forecasts that Adrian will continue to strengthen and turn to the north-northwest, followed by a turn to the west-northwest.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Earth Sciences:

nachricht Filling the gap: High-latitude volcanic eruptions also have global impact
20.11.2017 | Institute of Atmospheric Physics, Chinese Academy of Sciences

nachricht Antarctic landscape insights keep ice loss forecasts on the radar
20.11.2017 | University of Edinburgh

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>