Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A double-satellite NASA-style view of the first tropical storm in eastern Pacific: Adrian

09.06.2011
The first tropical depression in the Eastern Pacific Ocean is now the first tropical storm, and two satellites are providing NASA insights into its thunderstorms, rainfall, and intensity. NASA satellite data on newly born Tropical Storm Adrian shows high cloud tops and moderate rainfall, indications that the storm is getting stronger, triggering a tropical storm watch in Mexico.

Tropical Depression 1E is the first tropical depression of 2011 and formed in the eastern Pacific Ocean early on June 7. By the morning of June 8 it had strengthened into Tropical Storm Adrian, and is now forecast by the National Hurricane Center to reach hurricane strength.


This infrared image of Tropical Storm Adrian was taken from the GOES-11 satellite on June 8 at 12:00 UTC (8:00 a.m. EDT) and shows a compact, rounded storm off the western Mexico coast. The image reveals that Adrian has some higher, stronger thunderstorms in the center that are casting shadows on lower clouds around them. Credit: Credit: NASA/NOAA GOES Project, Dennis Chesters

This morning, the government of Mexico posted a tropical storm watch for the Mexican coast from Acapulco, west to Punta San Telmo. That means conditions are possible in the watch area from 24 to 48 hours. Meanwhile, rough surf and rip currents can be expected in the southwestern Mexican coast later today.

When the Geostationary Operational Environmental Satellite called GOES-11 passed over Tropical Storm Adrian earlier today, June 8 at 12:00 UTC (8:00 a.m. EDT), an infrared image shows Adrian as a compact, rounded storm off the western Mexico coast. GOES satellites are managed by NOAA, and images and animations are created at NASA's Goddard Space Flight Center in Greenbelt, Md. by the NASA/NOAA GOES Project.

The GOES-11 image revealed that Adrian has some higher, stronger thunderstorms around the center of circulation that are casting shadows on lower clouds around them. Those higher thunderstorms are stronger than the surrounding thunderstorms, and are likely dropping heavy rainfall (as much as 2 inches/50 mm per hour). The higher thunderstorms are also a sign that the storm continues to strengthen.

Rainfall within Adrian was captured yesterday, June 7 at 0727 UTC (3:27 a.m. EDT), when it was still Tropical Depression 1E. That's when the Tropical Rainfall Measuring Mission (TRMM) satellite flew overhead. TRMM is like a flying rain gauge in space because its precipitation radar instrument can measure rainfall rates. At that time TRMM noticed that Tropical Depression 1E had moderate rainfall surrounding its low level center. Moderate rainfall rates are between .78 to 1.57 inches (20 to 40 mm) per hour.

Adrian was already close to hurricane strength this morning, June 8. At 8 a.m. PDT (11 a.m. EDT), Adrian's maximum sustained winds were near 70 mph (110 kmh. It was about 285 miles (455 km) south-southwest of Acapulco, Mexico near 12.9 North and 100.8 West, and moving north-northwest near 5 mph (7 kmh). Minimum central pressure was 994 millibars.

The National Hurricane Center forecasts that Adrian will continue to strengthen and turn to the north-northwest, followed by a turn to the west-northwest.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Earth Sciences:

nachricht Research sheds new light on forces that threaten sensitive coastlines
24.04.2017 | Indiana University

nachricht NASA sees the end of ex-Tropical Cyclone 02W
21.04.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Molecular libraries for organic light-emitting diodes

24.04.2017 | Life Sciences

Research sheds new light on forces that threaten sensitive coastlines

24.04.2017 | Earth Sciences

Making lightweight construction suitable for series production

24.04.2017 | Machine Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>