Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


With a crush: A Jurassic brother of the enigmatic tuataras

Tuataras are often regarded as a classic example of a living fossil. They are the last survivors of an ancient lineage, which is said to have lost the evolutionary struggle with the modern lizards.

A new find from the Late Jurassic (c. 148 Ma ago) of southern Germany demonstrates that the fossil relatives of the tuatara showed a much greater evolutionary plasticity than previously recognized and were at the height of their ecological diversity at a time, when modern lizards were already widespread. This challenges the idea of their evolutionary inferiority and suggests that other reasons might be responsible for their decline.

Figure 1 (Tuatara.jpg): The tuatara, Sphenodon puctatus, which grows to up to 50 cm in length and lives on a few islands off the coast of New Zealand. Photo courtesy Helmut Tischlinger.
Photo: Helmut Tischlinger

Figure 2 (Oenosaurus.jpg): The skull of Oenosaurus in palatal view, with the tooth plates being well visible. Scale bar is 1 cm.
Photo: SNSB

It looks like a “normal” lizard, but belongs to an ancient lineage apart from modern lizards: the Tuatara, which is represented by only two species that live on a few islands off the coast of New Zealand. With a brain and mode of locomotion that is said to be intermediate between amphibians and reptiles, tuataras are among the most enigmatic living animals and are often regarded as living fossils, as a perfect model for an ancient lizard ancestor.

However, their parent lineage, the Rhynchocephalia ("Beak Heads") were wide-spread and diverse during the Mesozoic, the “age of dinosaurs”. To answer the question what led to their decline in the late Mesozoic seemed easy enough: with their obviously primitive appearance, rhynchocephalians were clearly inferior to the true lizards and even more so to the primitve mammals that radiated at that time. Were they really?

A new fossil relative of the tuataras found in the latest Jurassic of southern Germany challenges this idea, in line with other recent finds of rhynchocephalians. In a paper recently published in the scientific journal PLoS One, the German brother of the tuataras was given the name Oenosaurus muehlheimensis, revering the exquisite wine of the Franconian Alb and the village of Mühlheim, close to the place where the fossil was found. Oenosaurus closely resembles the living tuataras, but it has a dentition that is unique amongst tetrapods.

“When the specimen was found and only the palatal view of the skull was visible, we were all wondering what kind of animal it might be”, recalls Dr. Oliver Rauhut of the Bavarian State Collection for Palaeontology and Geology, the lead author of the study: “no one of us had ever seen such teeth in a reptile.” The dentition of Oenosaurus consists of massive tooth plates, the structure of which indicates that they might have been growing continuously, balanced by wear on the surface of the plate. Such teeth are otherwise only found in chimaeran and dipnoan fishes.

“We analysed the tooth plates with the help of computer tomography, and when I showed the pictures to a colleague who is specialized in the microstructure of fish teeth, she first found nothing unusual – until I told her that these were the teeth of a reptile”, says Dr. Adriana López-Arbarello, fish expert of the State Collection and one of the co-authors of the paper. “Then she almost couldn’t believe it”, she adds with a little smile. This discovery represents a previously unknown trophic adaptation in rhynchocephalians, indicating a diet of hard-shelled organisms. Rhynchocephalians otherwise have a very specialized kind of dentition, well adapted to cutting or tearing functions, which has been hypothesized to limit their evolutionary adaptability.

Thus, the dentition of Oenosaurus demonstrates an unexpected evolutionary plasticity in these animals and underlines the fact that rhyncocephalians were actually highly diverse, both morphological and ecological, during the latest Jurassic in Europe, just before the decline of this lineage on this continent. This contradicts the popular view that rhynchocephalians were inferior to lizards and early mammals and that selection pressure by these animals is sufficient to explain the demise of the group in the late Mesozoic; instead, climate change in the course of the fragmentation of the supercontinent of Pangaea might have played a major role.

The remains of Oenosaurus were found by Roland Pöschl in the outcrops of the Mörnsheim Formation in the Schaudiberg quarry in Mühlheim near Mörnsheim, central Bavaria, Germany. The owners of the quarry immediately recognized the scientific value of the fossil and kindly donated it to the Bayerische Staatssammlung für Paläontologie und Geologie in Munich. The Mörnsheim Formation is slightly younger than the well-known Solnhofen Formation, which, among others, has yielded the famous Urvogel, Archaeopteryx. The Mörnsheim Formation is also very fossiliferous, but much more poorly known, since, in contrast to the Solnhofen Formation, there are few commercial quarries in these rocks.

“We have just begun to explore these rocks, and more surprises are sure to come”, affirms Alexander Heyng. The geologist analyses the succession of rocks in the Schaudiberg quarry and also arranged the contact between the quarry owners and the scientists of the Bavarian State Collection. A large part of the Schaudiberg quarry is now open for exploration by visitors (, who can get actively involved in the fascinating adventure of discovering the Jurassic life and further support scientist in the challenge of deciphering the early history and evolutionary pathways of the modern organisms.

Link to article:

Dr. Oliver Rauhut
Dr. Adriana López-Arbarello
Bayerische Staatssammlung für Paläontologie und Geologie
Richard-Wagner-Str. 10
80333 München
+49 / (0)89/21806645 / 0163 741 7552
+49 / (0)89/21806725

Dr. Eva-Maria Natzer | idw
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>