Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A 2-for-1 for NASA's Aqua Satellite: Lupit and 23W in Western Pacific

28.10.2009
It seems like a common occurrence this season that there are two tropical cyclones spinning in the Western Pacific Ocean and this week, Lupit and newly formed 23W are proof. NASA's Aqua satellite flew over the Western Pacific early today and captured both storms in one satellite image.

Tropical Storm Lupit is becoming extra-tropical and is expected to track parallel to Japan while remaining at sea, east of the island. Meanwhile, Tropical Storm 23W is approaching Saipan and Andersen Air Force Base and is moving west.

The U.S. Navy's Joint Typhoon Warning Center (JTWC) forecasts tropical cyclones in the Western Pacific Ocean. The JWTC issued their final warning for Extra-tropical Storm Lupit today, October 26 at 0300 UTC (12 a.m. local time Tokyo). At that time, Lupit had maximum sustained winds near 52 mph and was stirring up rough surf and high waves along eastern Japan's coastline.

Extra-tropical storm Lupit was located approximately 580 nautical miles southwest of Tokyo, Japan, near 28.4 North and 134.8 East. It was moving northeast at 21 mph, and is expected to continue moving in that direction staying in open ocean. Lupit was completing transition to an extra-tropical storm and is also being adversely affected by wind shear (winds blowing at the storm in different levels of that atmosphere, that tear the storm apart).

NASA's Aqua satellite flew over both Lupit and TD23W on October 26 at 3:41 UTC (October 25 at 11:41 p.m. EDT). The Atmospheric Infrared Sounder (AIRS) instrument on Aqua captured both a visible and infrared image of the storms. The infrared satellite image confirmed that all of Lupit's deep convection (developing strong thunderstorms) has dissipated, and the most intense precipitation has shifted all to the northeast of the center of circulation, further exposing the center to wind shear. Meanwhile, the image also showed that 23W appeared to be getting well-organized.

Tropical Storm 23W had maximum sustained winds near 40 mph at 11 a.m. EDT on October 26. The storm's center was about 200 nautical miles east of Guam, near 13.4 North and 147.7 East. It was moving west-northwest near 17 mph.

NASA's CloudSat satellite also flew over 23W earlier this morning. CloudSat captured a side view of 23W's clouds on Oct. 26 between 03:43 – 03:46 UTC. CloudSat revealed sustained winds of 27 mph and a minimum central pressure of 1002 millibars when it was centered near 122 North and 151.3 East. Sustained winds have since increased to 40 mph. CloudSat also showed some high, strong thunderstorm cloud tops over 14 kilometers (almost 9 miles) high.

The forecast track from the JTWC takes Tropical Storm 23W between Andersen Air Force Base (island) and the island of Saipan, located north of Andersen. The storm is then forecast to intensify and move west toward the Philippines.

Text credit: Rob Gutro, NASA's Goddard Space Flight Center

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Earth Sciences:

nachricht From volcano's slope, NASA instrument looks sky high and to the future
27.04.2017 | NASA/Goddard Space Flight Center

nachricht Penn researchers quantify the changes that lightning inspires in rock
27.04.2017 | University of Pennsylvania

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>