Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

80 questions about the southern tip of the world

12.08.2014

The international Antarctic community formulates tomorrow’s challenges to research.

A forward-looking article by 75 leading Antarctic researchers and science managers from 22 countries appeared online in the scientific journal Nature on 6 August.


Base for German Antarctic research: Neumayer Station III near Atka Bight at the Weddell Sea

Photo: Stefan Christmann / Alfred-Wegener-Institut

The so-called “SCAR Horizon Scan” catalogues the 80 most pressing questions to be pursued during the next 20 years of research in the Antarctic and the Southern Ocean. In this interdisciplinary exchange of ideas, three scientists from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research contributed to working out the topics that now establish the thrust of Antarctic research.

How does the surface of the Earth look below the Antarctic ice, which itself is several kilometres thick? Which structures provide the ice sheet with a foothold and how far could the grounding lines for glaciers retreat, causing an increase in the number of icebergs calved?

The formation of deep water in the Southern Ocean is of global significance; how might this change if, through such processes, increased fresh water is released into the deep sea? How far to the north will hydrodynamics change in the area that drives the currents in the world’s oceans? How quickly will the change in the Antarctic take place and do we know of comparable developments in past eras?

These questions are the ones which biologists ask of geoscientists and oceanographers, for example, enabling them to estimate how not just individual species but also entire populations of flora and fauna would react. In future, concentration is to be focused on the effects of frequently observed combinations of multiple environmental factors as they change, instead of just individual factors. Whether organisms adapt, migrate or die off will, in part, depend upon the tempo of the changes. The survival of the community of living beings and its adaptability are essential to ecosystem outputs.

The smallest of algae in the Southern Ocean, for instance, produce oxygen and extract carbon dioxide from the atmosphere. If there is a change in their rate of photosynthesis, then this influences the concentration of the gases in water and, via the exchange of gases, has an effect on the atmosphere. Climatologists then use the results of detailed studies of these processes, ultimately incorporating them into climate models.

Thus the interactions between the atmosphere, land, water, ice and living beings – as well as potential changes in ecosystem outputs in response to changed environmental conditions – can be depicted in a way that is closer to reality.

Large areas of the Antarctic present major technical and logistics problems to science if scientific endeavour is to achieve the research targets that have been set. Storms and ice floes make it necessary to use icebreakers as research ships when exploring the Southern Ocean. Antarctica is the coldest and stormiest continent on our planet. Individuals have to expend great effort to conduct field work beyond the 64 research stations.

The operation and supply of the stations themselves require extensive polar logistics. That alone is reason enough for the international community of Antarctic researchers to be excellently networked. One example is the Scientific Committee on Antarctic Science (SCAR), which initiated the horizon scan now being published.

“Bundling the future-oriented questions presented by the wide variety of disciplines involved in Antarctic research was itself an exciting process,” reports Prof. Heinrich Miller, geophysicist at the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI). Together with AWI director and SCAR vice president Prof. Karin Lochte and AWI biologist Prof. Julian Gutt, Miller consolidated in a SCAR horizon workshop and three discussion sessions the suggestions presented by the scientific community, thus forming six priorities for Antarctic science. “We have been successful in formulating 80 questions of concern to Antarctic researchers. In ten or twenty years we can determine how far we have come and whether relevance has shifted,” Miller continues.

In the Nature study, the 75 authors formulated the basic prerequisites needed so that international commitment in the Antarctic will continue to correspond to the continent’s significance to the planet as a whole. The core demands here are for sustained and stable funding, access to all of Antarctica throughout the year, application of newly developed technologies, strengthened environmental protection, growth in international cooperation, and improved communication among scientists, logistics experts, those funding research, political decision-makers and the public.

In addition to the questions in the fields of climate science, geology and biology, the authors consider political factors, including the leading role of the Antarctic Treaty. Among other aspects, the Treaty regulates the peaceful use of the area beyond the 60th parallel south and governs free international collaboration in research.

The authors view the prerequisites for protected marine areas; they also observe socioeconomic aspects, genetic resources, and potential future developments in tourism and fishery in the Antarctic. Nor is space research neglected. The clean air over the Antarctic permits an especially clear view of space. Thus the authors point out how the great potentials of Antarctic research can be used in many fields relevant to society.

Original study: Mahlon C. Kennicutt II, Steven L. Chown et al.: “Six Priorities for Antarctic Research“, Comment in Nature 512, 23–25; 7 August 2014 (doi:10.1038/512023a). The catalogue of 80 questions is available there as supplementary material (see pdf file on Nature website: "Antarctic Science Horizon Scan Method and Questions").


Notes for Editors:
Please find printable photos at: http://www.awi.de/index.php?id=7269

Your contact at the Alfred Wegener Institute is Professor Julian Gutt (e-mail to arrange a date for a phone call: Julian.Gutt(at)awi.de).

Your contact at the Dept. of Communications and Media Relations is Dr Folke Mehrtens (Phone: +49 / 471 / 4831-2007; e-mail: medien(at)awi.de).

Follow the Alfred Wegener Institute on Twitter and Facebook. In this way you receive all the current reports as well as information on interesting everyday stories drawn from the work and people of the Institute.

The Alfred Wegener Institute conducts research in the Arctic, Antarctic and oceans of the high and mid-latitudes. It coordinates polar research in Germany and provides major infrastructure to the international scientific community, such as the research icebreaker Polarstern and stations in the Arctic and Antarctica. The Alfred Wegener Institute is one of the 18 research centres of the Helmholtz Association, the largest scientific organisation in Germany.

Ralf Röchert | idw - Informationsdienst Wissenschaft
Further information:
http://www.awi.de

Further reports about: AWI Antarctic Antarctica Helmholtz Helmholtz-Zentrum Horizon Meeresforschung Ocean SCAR atmosphere concentration

More articles from Earth Sciences:

nachricht New Technique for Finding Weakness in Earth’s Crust
30.09.2016 | University of Adelaide

nachricht Researcher creates a controlled rogue wave in realistic oceanic conditions
30.09.2016 | Aalto University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

Heavy construction machinery is the focus of Oak Ridge National Laboratory’s latest advance in additive manufacturing research. With industry partners and university students, ORNL researchers are designing and producing the world’s first 3D printed excavator, a prototype that will leverage large-scale AM technologies and explore the feasibility of printing with metal alloys.

Increasing the size and speed of metal-based 3D printing techniques, using low-cost alloys like steel and aluminum, could create new industrial applications...

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Paper – Panacea Green Infrastructure?

30.09.2016 | Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

 
Latest News

First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

30.09.2016 | Materials Sciences

New Technique for Finding Weakness in Earth’s Crust

30.09.2016 | Earth Sciences

Cells migrate collectively by intermittent bursts of activity

30.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>