Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

80 questions about the southern tip of the world

12.08.2014

The international Antarctic community formulates tomorrow’s challenges to research.

A forward-looking article by 75 leading Antarctic researchers and science managers from 22 countries appeared online in the scientific journal Nature on 6 August.


Base for German Antarctic research: Neumayer Station III near Atka Bight at the Weddell Sea

Photo: Stefan Christmann / Alfred-Wegener-Institut

The so-called “SCAR Horizon Scan” catalogues the 80 most pressing questions to be pursued during the next 20 years of research in the Antarctic and the Southern Ocean. In this interdisciplinary exchange of ideas, three scientists from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research contributed to working out the topics that now establish the thrust of Antarctic research.

How does the surface of the Earth look below the Antarctic ice, which itself is several kilometres thick? Which structures provide the ice sheet with a foothold and how far could the grounding lines for glaciers retreat, causing an increase in the number of icebergs calved?

The formation of deep water in the Southern Ocean is of global significance; how might this change if, through such processes, increased fresh water is released into the deep sea? How far to the north will hydrodynamics change in the area that drives the currents in the world’s oceans? How quickly will the change in the Antarctic take place and do we know of comparable developments in past eras?

These questions are the ones which biologists ask of geoscientists and oceanographers, for example, enabling them to estimate how not just individual species but also entire populations of flora and fauna would react. In future, concentration is to be focused on the effects of frequently observed combinations of multiple environmental factors as they change, instead of just individual factors. Whether organisms adapt, migrate or die off will, in part, depend upon the tempo of the changes. The survival of the community of living beings and its adaptability are essential to ecosystem outputs.

The smallest of algae in the Southern Ocean, for instance, produce oxygen and extract carbon dioxide from the atmosphere. If there is a change in their rate of photosynthesis, then this influences the concentration of the gases in water and, via the exchange of gases, has an effect on the atmosphere. Climatologists then use the results of detailed studies of these processes, ultimately incorporating them into climate models.

Thus the interactions between the atmosphere, land, water, ice and living beings – as well as potential changes in ecosystem outputs in response to changed environmental conditions – can be depicted in a way that is closer to reality.

Large areas of the Antarctic present major technical and logistics problems to science if scientific endeavour is to achieve the research targets that have been set. Storms and ice floes make it necessary to use icebreakers as research ships when exploring the Southern Ocean. Antarctica is the coldest and stormiest continent on our planet. Individuals have to expend great effort to conduct field work beyond the 64 research stations.

The operation and supply of the stations themselves require extensive polar logistics. That alone is reason enough for the international community of Antarctic researchers to be excellently networked. One example is the Scientific Committee on Antarctic Science (SCAR), which initiated the horizon scan now being published.

“Bundling the future-oriented questions presented by the wide variety of disciplines involved in Antarctic research was itself an exciting process,” reports Prof. Heinrich Miller, geophysicist at the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI). Together with AWI director and SCAR vice president Prof. Karin Lochte and AWI biologist Prof. Julian Gutt, Miller consolidated in a SCAR horizon workshop and three discussion sessions the suggestions presented by the scientific community, thus forming six priorities for Antarctic science. “We have been successful in formulating 80 questions of concern to Antarctic researchers. In ten or twenty years we can determine how far we have come and whether relevance has shifted,” Miller continues.

In the Nature study, the 75 authors formulated the basic prerequisites needed so that international commitment in the Antarctic will continue to correspond to the continent’s significance to the planet as a whole. The core demands here are for sustained and stable funding, access to all of Antarctica throughout the year, application of newly developed technologies, strengthened environmental protection, growth in international cooperation, and improved communication among scientists, logistics experts, those funding research, political decision-makers and the public.

In addition to the questions in the fields of climate science, geology and biology, the authors consider political factors, including the leading role of the Antarctic Treaty. Among other aspects, the Treaty regulates the peaceful use of the area beyond the 60th parallel south and governs free international collaboration in research.

The authors view the prerequisites for protected marine areas; they also observe socioeconomic aspects, genetic resources, and potential future developments in tourism and fishery in the Antarctic. Nor is space research neglected. The clean air over the Antarctic permits an especially clear view of space. Thus the authors point out how the great potentials of Antarctic research can be used in many fields relevant to society.

Original study: Mahlon C. Kennicutt II, Steven L. Chown et al.: “Six Priorities for Antarctic Research“, Comment in Nature 512, 23–25; 7 August 2014 (doi:10.1038/512023a). The catalogue of 80 questions is available there as supplementary material (see pdf file on Nature website: "Antarctic Science Horizon Scan Method and Questions").


Notes for Editors:
Please find printable photos at: http://www.awi.de/index.php?id=7269

Your contact at the Alfred Wegener Institute is Professor Julian Gutt (e-mail to arrange a date for a phone call: Julian.Gutt(at)awi.de).

Your contact at the Dept. of Communications and Media Relations is Dr Folke Mehrtens (Phone: +49 / 471 / 4831-2007; e-mail: medien(at)awi.de).

Follow the Alfred Wegener Institute on Twitter and Facebook. In this way you receive all the current reports as well as information on interesting everyday stories drawn from the work and people of the Institute.

The Alfred Wegener Institute conducts research in the Arctic, Antarctic and oceans of the high and mid-latitudes. It coordinates polar research in Germany and provides major infrastructure to the international scientific community, such as the research icebreaker Polarstern and stations in the Arctic and Antarctica. The Alfred Wegener Institute is one of the 18 research centres of the Helmholtz Association, the largest scientific organisation in Germany.

Ralf Röchert | idw - Informationsdienst Wissenschaft
Further information:
http://www.awi.de

Further reports about: AWI Antarctic Antarctica Helmholtz Helmholtz-Zentrum Horizon Meeresforschung Ocean SCAR atmosphere concentration

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

New 3-D model predicts best planting practices for farmers

26.06.2017 | Agricultural and Forestry Science

New research reveals impact of seismic surveys on zooplankton

26.06.2017 | Life Sciences

Correct connections are crucial

26.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>