Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

68 Percent of New England and Mid-Atlantic beaches Eroding

24.02.2011
An assessment of coastal change over the past 150 years has found 68 percent of beaches in the New England and Mid-Atlantic region are eroding, according to a U.S. Geological Survey report released yesterday.

Scientists studied more than 650 miles of the New England and Mid-Atlantic coasts and found the average rate of coastal change – taking into account beaches that are both eroding and prograding -- was negative 1.6 feet per year. Of those beaches eroding, the most extreme case exceeded 60 feet per year.

The past 25 to 30 years saw a small reduction in the percentage of beaches eroding – dropping to 60 percent, possibly as a result of beach restoration activities such as adding sand to beaches.

“This report provides invaluable objective data to help scientists and managers better understand natural changes to and human impacts on the New England and Mid-Atlantic coasts,” said Anne Castle, Assistant Secretary of the Interior for Water and Science. “The information gathered can inform decisions about future land use, transportation corridors, and restoration projects.”

Beaches change in response to a variety of factors, including changes in the amount of available sand, storms, sea-level rise and human activities. How much a beach is eroding or prograding in any given location is due to some combination of these factors, which vary from place to place.

The Mid-Atlantic coast – from Long Island, N.Y. to the Virginia-North Carolina border -- is eroding at higher average rates than the New England coast. The difference in the type of coastline, with sandy areas being more vulnerable to erosion than areas with a greater concentration of rocky coasts, was the primary factor.

The researchers found that, although coastal change is highly variable, the majority of the coast is eroding throughout both regions, indicating erosion hazards are widespread.

"There is increasing need for this kind of comprehensive assessment in all coastal environments to guide managed response to sea-level rise," said Dr. Cheryl Hapke of the USGS, lead author of the new report. "It is very difficult to predict what may happen in the future without a solid understanding of what has happened in the past.”

The researchers used historical data sources such as maps and aerial photographs, as well as modern data like lidar, or “light detection and ranging,” to measure shoreline change at more than 21,000 locations.

This analysis of past and present trends of shoreline movement is designed to allow for future repeatable analyses of shoreline movement, coastal erosion, and land loss. The results of the study provide a baseline for coastal change information that can be used to inform a wide variety of coastal management decisions, Hapke said.

The report, titled "National Assessment of Shoreline Change: Historical Shoreline Change along the New England and Mid-Atlantic Coasts," is the fifth report produced as part of the USGS’s National Assessment of Shoreline Change project. An accompanying report that provides the geographic information system (GIS) data used to conduct the coastal change analysis is being released simultaneously.

USGS provides science for a changing world. Visit USGS.gov, and follow us on Twitter @USGS and our other social media channels.

Subscribe to our news releases via e-mail, RSS or Twitter.

Links and contacts within this release are valid at the time of publication.

Diane Noserale | EurekAlert!
Further information:
http://www.usgs.gov

More articles from Earth Sciences:

nachricht Multi-year submarine-canyon study challenges textbook theories about turbidity currents
12.12.2017 | Monterey Bay Aquarium Research Institute

nachricht How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas
11.12.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>