Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

68 Percent of New England and Mid-Atlantic beaches Eroding

24.02.2011
An assessment of coastal change over the past 150 years has found 68 percent of beaches in the New England and Mid-Atlantic region are eroding, according to a U.S. Geological Survey report released yesterday.

Scientists studied more than 650 miles of the New England and Mid-Atlantic coasts and found the average rate of coastal change – taking into account beaches that are both eroding and prograding -- was negative 1.6 feet per year. Of those beaches eroding, the most extreme case exceeded 60 feet per year.

The past 25 to 30 years saw a small reduction in the percentage of beaches eroding – dropping to 60 percent, possibly as a result of beach restoration activities such as adding sand to beaches.

“This report provides invaluable objective data to help scientists and managers better understand natural changes to and human impacts on the New England and Mid-Atlantic coasts,” said Anne Castle, Assistant Secretary of the Interior for Water and Science. “The information gathered can inform decisions about future land use, transportation corridors, and restoration projects.”

Beaches change in response to a variety of factors, including changes in the amount of available sand, storms, sea-level rise and human activities. How much a beach is eroding or prograding in any given location is due to some combination of these factors, which vary from place to place.

The Mid-Atlantic coast – from Long Island, N.Y. to the Virginia-North Carolina border -- is eroding at higher average rates than the New England coast. The difference in the type of coastline, with sandy areas being more vulnerable to erosion than areas with a greater concentration of rocky coasts, was the primary factor.

The researchers found that, although coastal change is highly variable, the majority of the coast is eroding throughout both regions, indicating erosion hazards are widespread.

"There is increasing need for this kind of comprehensive assessment in all coastal environments to guide managed response to sea-level rise," said Dr. Cheryl Hapke of the USGS, lead author of the new report. "It is very difficult to predict what may happen in the future without a solid understanding of what has happened in the past.”

The researchers used historical data sources such as maps and aerial photographs, as well as modern data like lidar, or “light detection and ranging,” to measure shoreline change at more than 21,000 locations.

This analysis of past and present trends of shoreline movement is designed to allow for future repeatable analyses of shoreline movement, coastal erosion, and land loss. The results of the study provide a baseline for coastal change information that can be used to inform a wide variety of coastal management decisions, Hapke said.

The report, titled "National Assessment of Shoreline Change: Historical Shoreline Change along the New England and Mid-Atlantic Coasts," is the fifth report produced as part of the USGS’s National Assessment of Shoreline Change project. An accompanying report that provides the geographic information system (GIS) data used to conduct the coastal change analysis is being released simultaneously.

USGS provides science for a changing world. Visit USGS.gov, and follow us on Twitter @USGS and our other social media channels.

Subscribe to our news releases via e-mail, RSS or Twitter.

Links and contacts within this release are valid at the time of publication.

Diane Noserale | EurekAlert!
Further information:
http://www.usgs.gov

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>