Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

50-million-year-old clam shells provide indications of future of El Niño phenomenon

14.09.2011
Earth warming will presumably not lead to a permanent El Niño state in the South Pacific Ocean.

This is the conclusion drawn by an international team of researchers after it investigated 50-million-year-old clam shells and wood from the Antarctic. The growth rings of these fossils indicate that there was also a climate rhythm over the South Pacific during the last prolonged interglacial phase of the Earth’s history resembling the present-day interplay of El Niño and La Niña.

Floods in Peru, drought in Australia: When the South Pacific Ocean warms up at an above-average rate every three to six years and “El Niño” influences weather patterns, the world in the coastal countries affected is turned completely around. Fishermen come back with empty nets, crops are lost, food prices increase and nearly everyone hopes the warm phase of the climate phenomenon “El Niño Southern Oscillation (ENSO)” will abate as quickly as possible.

The ENSO phenomenon still changes regularly from its cold phase (La Niña) to the warm phase (El Niño) and back. But what will things be like in the future? How will the worldwide temperature rise influence ENSO? Will there perhaps be a permanent El Niño? To answer this important question, scientists are looking at the past – particularly at the Eocene period 60 to 37 million years ago. “The Eocene is considered to be the last real prolonged warm period. At that time the Antarctic was ice-free and green. Even trees grew and we know about the water temperature of the ocean that it fluctuated between 10 and 16 degrees Celsius over the year,” says Thomas Brey, biologist at the Alfred Wegener Institute for Polar and Marine Research in the Helmholtz Association.

He and colleagues from the USA and Germany have now succeeded for the first time in verifying a rhythm according to the pattern of the ENSO phenomenon in the growth patterns of fossil clams and wood from the early Eocene. Their results will soon appear in the journal Geophysical Research Letter and are already available on its website in a text entitled “El Niño in the Eocene greenhouse recorded by fossil bivalves and wood from Antarctica”.

Brey and his colleagues investigated shells of the bivalve species Cucullaea Raea and Eurhomalea antarctica that are 50 million years old as well as a piece of wood from Seymour Island in the Antarctic. “Like trees, clams form growth rings. We measured their width and examined them for growth rhythms,” states Brey.

Whether clams grow depends on the availability of food and heat. “That means the change from “good” and “poor” environmental conditions at that time is still reflected in the width of the growth rings we find today. And as we were able to show, this change took place in the same three to six year rhythm we are familiar with in connection with ENSO today,” says Brey.

The shells are a real piece of luck for him. “To verify ENSO, we need climate archives that cover the largest possible period year by year. Back then clams lived for up to 100 years. This is a good basis for our work.”

To examine the significance of the growth rings of clams and wood, the researchers compared their measurement results with current ENSO data as well as with the ENSO-like fluctuations produced by a climate model of the Eocene. The result: all patterns correspond. “Our results are a strong indication that an ENSO phenomenon which fluctuated between warm and cold phases also existed in the warm Eocene,” says Brey.

Good news! Should the scientists be right, these findings mean for the future that in all likelihood the worldwide temperature rise will not disrupt the ENSO climate rhythm above the South Pacific Ocean.

The Alfred Wegener Institute conducts research in the Arctic, Antarctic and oceans of the high and mid-latitudes. It coordinates polar research in Germany and provides major infrastructure to the international scientific community, such as the research icebreaker Polarstern and stations in the Arctic and Antarctica. The Alfred Wegener Institute is one of the seventeen research centres of the Helmholtz Association, the largest scientific organisation in Germany.

Sina Löschke | idw
Further information:
http://www.awi.de

More articles from Earth Sciences:

nachricht Large-Mouthed Fish Was Top Predator After Mass Extinction
26.07.2017 | Universität Zürich

nachricht Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds
25.07.2017 | University of Illinois at Urbana-Champaign

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Physicists gain new insights into nanosystems with spherical confinement

27.07.2017 | Materials Sciences

Seeing more with PET scans: New chemistry for medical imaging

27.07.2017 | Life Sciences

Did you know that infrared heat and UV light contribute to the success of your barbecue?

27.07.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>