Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

50-million-year-old clam shells provide indications of future of El Niño phenomenon

14.09.2011
Earth warming will presumably not lead to a permanent El Niño state in the South Pacific Ocean.

This is the conclusion drawn by an international team of researchers after it investigated 50-million-year-old clam shells and wood from the Antarctic. The growth rings of these fossils indicate that there was also a climate rhythm over the South Pacific during the last prolonged interglacial phase of the Earth’s history resembling the present-day interplay of El Niño and La Niña.

Floods in Peru, drought in Australia: When the South Pacific Ocean warms up at an above-average rate every three to six years and “El Niño” influences weather patterns, the world in the coastal countries affected is turned completely around. Fishermen come back with empty nets, crops are lost, food prices increase and nearly everyone hopes the warm phase of the climate phenomenon “El Niño Southern Oscillation (ENSO)” will abate as quickly as possible.

The ENSO phenomenon still changes regularly from its cold phase (La Niña) to the warm phase (El Niño) and back. But what will things be like in the future? How will the worldwide temperature rise influence ENSO? Will there perhaps be a permanent El Niño? To answer this important question, scientists are looking at the past – particularly at the Eocene period 60 to 37 million years ago. “The Eocene is considered to be the last real prolonged warm period. At that time the Antarctic was ice-free and green. Even trees grew and we know about the water temperature of the ocean that it fluctuated between 10 and 16 degrees Celsius over the year,” says Thomas Brey, biologist at the Alfred Wegener Institute for Polar and Marine Research in the Helmholtz Association.

He and colleagues from the USA and Germany have now succeeded for the first time in verifying a rhythm according to the pattern of the ENSO phenomenon in the growth patterns of fossil clams and wood from the early Eocene. Their results will soon appear in the journal Geophysical Research Letter and are already available on its website in a text entitled “El Niño in the Eocene greenhouse recorded by fossil bivalves and wood from Antarctica”.

Brey and his colleagues investigated shells of the bivalve species Cucullaea Raea and Eurhomalea antarctica that are 50 million years old as well as a piece of wood from Seymour Island in the Antarctic. “Like trees, clams form growth rings. We measured their width and examined them for growth rhythms,” states Brey.

Whether clams grow depends on the availability of food and heat. “That means the change from “good” and “poor” environmental conditions at that time is still reflected in the width of the growth rings we find today. And as we were able to show, this change took place in the same three to six year rhythm we are familiar with in connection with ENSO today,” says Brey.

The shells are a real piece of luck for him. “To verify ENSO, we need climate archives that cover the largest possible period year by year. Back then clams lived for up to 100 years. This is a good basis for our work.”

To examine the significance of the growth rings of clams and wood, the researchers compared their measurement results with current ENSO data as well as with the ENSO-like fluctuations produced by a climate model of the Eocene. The result: all patterns correspond. “Our results are a strong indication that an ENSO phenomenon which fluctuated between warm and cold phases also existed in the warm Eocene,” says Brey.

Good news! Should the scientists be right, these findings mean for the future that in all likelihood the worldwide temperature rise will not disrupt the ENSO climate rhythm above the South Pacific Ocean.

The Alfred Wegener Institute conducts research in the Arctic, Antarctic and oceans of the high and mid-latitudes. It coordinates polar research in Germany and provides major infrastructure to the international scientific community, such as the research icebreaker Polarstern and stations in the Arctic and Antarctica. The Alfred Wegener Institute is one of the seventeen research centres of the Helmholtz Association, the largest scientific organisation in Germany.

Sina Löschke | idw
Further information:
http://www.awi.de

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>