Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

3 NASA satellites seek clues to Hurricane Julia's rapid intensification

16.09.2010
Hurricane Julia intensified rapidly overnight and is now a Category 4 hurricane on the Saffir-Simpson Scale and NASA's Aqua, Terra and TRMM satellites captured clues as they passed over her from space.

The Tropical Rainfall Measuring Mission (TRMM) satellite passed over intensifying hurricane Julia during the afternoon of Sept. 14 and captured very heavy rain falling at 1807 UTC (2:07 p.m. EDT). That heavy rainfall was a clue that she would intensify overnight, and today, Sept. 15, she has become a Category Four hurricane on the Saffir-Simpson Scale.

TRMM's Precipitation Radar data showed that concentric rain bands circling Julia's center were dropping heavy rainfall at over 50 mm/hr (~2 inches). TRMM showed that the heaviest rainfall was located in powerful thunderstorms northwest of Julia's center of circulation. Julia's wind speeds increased to 115 knots (~132 mph) by early on Wednesday, September 15 making it a category four hurricane on the Saffir-Simpson scale.

On Sept. 14 at 12:40 UTC (8:40 a.m. EDT) the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument on NASA's Terra satellite captured a visible image of Hurricane Julia before her rapid intensification. In that image, her eye was cloud-filled. Today Julia has "a clear eye structure with impressive cloud top enhancement," according to the National Hurricane Center which is a clear sign that she strengthened since Terra passed by on Sept. 14.

NASA's Aqua satellite flew over Julia today, Sept. 15. The Atmospheric Infrared Sounder (AIRS) instrument onboard captured an infrared image of Julia at 0353 UTC (Sept. 14 at 11:53 p.m. EDT) and did not yet show an eye, which developed later. It did show very strong thunderstorms around Julia's center where cloud heights were as cold as -63 degrees Fahrenheit and heavy rain was falling.

At 11 a.m. EDT today, Sept. 15, Julia's maximum sustained winds were near 135 mph. Julia is a much small storm than the monster that Igor has become. Igor's tropical storm-force winds extend out farther than 275 miles from the center, while Julia's extend 115 miles making her less than half the size of Igor.

The outflow from Hurricane Igor and a nearby upper-level low pressure area are combining to produce southerly wind shear over Julia, which is what the National Hurricane Center noted as the reasons her intensity leveled off this morning.

Julia was located about 595 miles west-northwest of the Cape Verde Islands, near latitude 18.2 North and longitude 32.7 West. Her estimated minimum central pressure is 950 millibars. Julia is moving toward the northwest near 15 mph and this general motion is expected to continue over the next day or two.

Julia is expected to maintain its intensity today before slowly weakening later on Sept. 16 from increased southerly wind shear and cooler sea surface temperatures.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov
http://www.eurekalert.org/pub_releases/2010-09/nsfc-3ns091510.php

More articles from Earth Sciences:

nachricht A new dead zone in the Indian Ocean could impact future marine nutrient balance
06.12.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht NASA's AIM observes early noctilucent ice clouds over Antarctica
05.12.2016 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>