Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

3 NASA satellites capture Typhoon Megi strengthening again

21.10.2010
Three NASA satellites are keeping tabs on Typhoon Megi and noticed that it was strengthening in the South China Sea today, but increasing wind shear may again weaken the system over the next couple of days.

NASA's TRMM, CloudSat and Aqua satellite captured images of Megi's clouds, rainfall and eye as they passed over the storm and saw clouds higher than 9 miles filled with ice, creating heavy rainfall.

The Tropical Rainfall Measuring Mission (TRMM) satellite passed over Typhoon Megi from its vantage point in space on October 18 at 2321 UTC (7:31 p.m. EDT) and saw that Megi was starting to re-organize after weakening from its encounter with the northern Philippines.

The TRMM team at NASA's Goddard Space Flight Center in Greenbelt, Md. creates rainfall imagery using data from various instruments aboard the satellite. Rain rates in the center of the TRMM swath were created from the TRMM Precipitation Radar (PR), the only spaceborne radar of its kind, while those in the outer portion are from the TRMM Microwave Imager (TMI). To put the image together, the rain rates were then overlaid on infrared data from the TRMM Visible Infrared Scanner. The October 18 TRMM daylight pass showed that Megi's eye was clearer than it was just a few hours earlier and that moderate to heavy rain showers were again completely surrounding the eye indicating it was strengthening at that time.

Also on October 18, NASA's CloudSat satellite passed over Typhoon Megi and the satellite's Cloud Profiling Radar captured a view of the typhoon's clouds from the side. The data gathered from Cloudsat revealed that the cloud tops were over 15 kilometers (9.3 miles) high, and ice was present in them. CloudSat also noticed areas of intense rainfall exceeding 30mm/hr (1.18 inches/hour).

On October 20 at 0530 UTC (1:30 a.m. EDT), the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument on NASA's Aqua satellite captured a visible image of Typhoon Megi as it filled up a large part of the South China Sea. The image revealed an eye filled with high clouds and a very large system.

At 11 a.m. EDT (1500 UTC) on October 20, Typhoon Megi's maximum sustained winds had increased to 110 knots (126 mph). It was about 285 nautical miles south-southeast of Hong Kong, China near 18.7 North and 117.2 East. It was moving north at 8 mph (7 knots). Water vapor imagery has shown that its northern edge is eroding from strong upper level westerly winds. Infrared imagery, such as that from NASA's Atmospheric Infrared Sounder (AIRS) instrument on the Aqua satellite revealed that deep convection around the northern rim of the eyewall is decreasing indicating a weakening trend.

Typhoon Megi is forecast to make landfall on October 23 east of Hong Kong and then rapidly dissipate as a significant tropical cyclone.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Earth Sciences:

nachricht Sediment from Himalayas may have made 2004 Indian Ocean earthquake more severe
26.05.2017 | Oregon State University

nachricht Devils Hole: Ancient Traces of Climate History
24.05.2017 | Universität Innsbruck

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>