Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The last 3 million years at a snail's pace: a tiny trapdoor opens a new way to date the past

05.08.2011
Scientists at the University of York, using an 'amino acid time capsule', have led the largest ever programme to date the British Quaternary period, stretching back nearly three million years.

It is the first widespread application of refinements of the 40-year-old technique of amino acid geochronology. The refined method, developed at York’s BioArCh laboratories, measures the breakdown of a closed system of protein in fossil snail shells, and provides a method of dating archaeological and geological sites.

Britain has an unparalleled studied record of fossil-rich terrestrial sediments from the Quaternary, a period that includes relatively long glacial episodes – known as the Ice Age – interspersed with shorter ‘interglacial’ periods where temperatures may have exceeded present day values.

However, too often the interglacial deposits have proved difficult to link to global climatic signals because they are just small isolated exposures, often revealed by quarrying.

Using the new method, known as amino acid racemization, it will be possible to link climatic records from deep sea sediments and ice cores with the responses of plants and animals, including humans, to climate change over the last three million years. The research is published in the latest issue of Nature.

The new method was developed by Dr Kirsty Penkman, of the Department of Chemistry, alongside Professor Matthew Collins of the Department of Archaeology at York, and measures the the extent of protein degradation in calcareous fossils such as mollusc shells. It is based on the analysis of intra-crystalline amino acids – the building blocks of protein – preserved in the fossil opercula (the little ‘trapdoor’ the snail uses to shut itself away inside its shell) of the freshwater gastropod Bithynia. It provides the first single method that is able to accurately date such a wide range of sites over this time period.

Dr Penkman said: "The amino acids are securely preserved within calcium carbonate crystals of the opercula. This crystal cage protects the protein from external environmental factors, so the extent of internal protein degradation allows us to identify the age of the samples. In essence, they are a protein time capsule.

“This framework can be used to tell us in greater detail than ever before how plants and animals reacted to glacial and interglacial periods, and has helped us establish the patterns of human occupation of Britain, supporting the view that these islands were deserted in the Last Interglacial period.”

In a close collaboration with palaeontologist Dr Richard Preece in the Department of Zoology at the University of Cambridge, the study examined a total of 470 fossil remains from 71 sites in the UK and three on continental Europe. The method proved highly reliable with more than 98 per cent of samples yielding useful results, resulting in the largest ever geochronological programme of the British Pleistocene.

Professor Collins said: "When we started this work 11 years ago, we thought it was going to be relatively straightforward to identify a good material for dating, but the first 3 years of research on shells showed that the stability of the mineral itself was vital. The tiny trapdoor of a snail proved to be the key to success."

Dr Preece added: “Luckily, fossil opercula are common in Quaternary sediments around the world, so the new technique can be used to build regional Ice Age chronologies everywhere, giving it enormous international scope”.

Vital to the study were the inter-disciplinary collaborations with Quaternary scientists, the core team of which involved researchers at the Department of Geography, University of Durham; Institute of Archaeology and Antiquity, University of Birmingham; Institute of Archaeology, University College London; the Netherlands Centre for Biodiversity, Leiden and the Department of Palaeontology, The Natural History Museum.

The analyses were funded by English Heritage, Natural Environment Research Council and the Wellcome Trust. The research is a contribution to the Ancient Human Occupation of Britain (AHOB) project funded by the Leverhulme Trust.

David Garner | EurekAlert!
Further information:
http://www.york.ac.uk
http://www.york.ac.uk/news-and-events/news/2011/research/amino-acid/

More articles from Earth Sciences:

nachricht Colorado River's connection with the ocean was a punctuated affair
16.11.2017 | University of Oregon

nachricht Researchers create largest, longest multiphysics earthquake simulation to date
14.11.2017 | Gauss Centre for Supercomputing

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>