Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The last 3 million years at a snail's pace: a tiny trapdoor opens a new way to date the past

05.08.2011
Scientists at the University of York, using an 'amino acid time capsule', have led the largest ever programme to date the British Quaternary period, stretching back nearly three million years.

It is the first widespread application of refinements of the 40-year-old technique of amino acid geochronology. The refined method, developed at York’s BioArCh laboratories, measures the breakdown of a closed system of protein in fossil snail shells, and provides a method of dating archaeological and geological sites.

Britain has an unparalleled studied record of fossil-rich terrestrial sediments from the Quaternary, a period that includes relatively long glacial episodes – known as the Ice Age – interspersed with shorter ‘interglacial’ periods where temperatures may have exceeded present day values.

However, too often the interglacial deposits have proved difficult to link to global climatic signals because they are just small isolated exposures, often revealed by quarrying.

Using the new method, known as amino acid racemization, it will be possible to link climatic records from deep sea sediments and ice cores with the responses of plants and animals, including humans, to climate change over the last three million years. The research is published in the latest issue of Nature.

The new method was developed by Dr Kirsty Penkman, of the Department of Chemistry, alongside Professor Matthew Collins of the Department of Archaeology at York, and measures the the extent of protein degradation in calcareous fossils such as mollusc shells. It is based on the analysis of intra-crystalline amino acids – the building blocks of protein – preserved in the fossil opercula (the little ‘trapdoor’ the snail uses to shut itself away inside its shell) of the freshwater gastropod Bithynia. It provides the first single method that is able to accurately date such a wide range of sites over this time period.

Dr Penkman said: "The amino acids are securely preserved within calcium carbonate crystals of the opercula. This crystal cage protects the protein from external environmental factors, so the extent of internal protein degradation allows us to identify the age of the samples. In essence, they are a protein time capsule.

“This framework can be used to tell us in greater detail than ever before how plants and animals reacted to glacial and interglacial periods, and has helped us establish the patterns of human occupation of Britain, supporting the view that these islands were deserted in the Last Interglacial period.”

In a close collaboration with palaeontologist Dr Richard Preece in the Department of Zoology at the University of Cambridge, the study examined a total of 470 fossil remains from 71 sites in the UK and three on continental Europe. The method proved highly reliable with more than 98 per cent of samples yielding useful results, resulting in the largest ever geochronological programme of the British Pleistocene.

Professor Collins said: "When we started this work 11 years ago, we thought it was going to be relatively straightforward to identify a good material for dating, but the first 3 years of research on shells showed that the stability of the mineral itself was vital. The tiny trapdoor of a snail proved to be the key to success."

Dr Preece added: “Luckily, fossil opercula are common in Quaternary sediments around the world, so the new technique can be used to build regional Ice Age chronologies everywhere, giving it enormous international scope”.

Vital to the study were the inter-disciplinary collaborations with Quaternary scientists, the core team of which involved researchers at the Department of Geography, University of Durham; Institute of Archaeology and Antiquity, University of Birmingham; Institute of Archaeology, University College London; the Netherlands Centre for Biodiversity, Leiden and the Department of Palaeontology, The Natural History Museum.

The analyses were funded by English Heritage, Natural Environment Research Council and the Wellcome Trust. The research is a contribution to the Ancient Human Occupation of Britain (AHOB) project funded by the Leverhulme Trust.

David Garner | EurekAlert!
Further information:
http://www.york.ac.uk
http://www.york.ac.uk/news-and-events/news/2011/research/amino-acid/

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>