Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


21st Century detective work reveals how ancient rock got off to a hot start

A new technique using X-rays has enabled scientists to play ‘detective’ and solve the debate about the origins of a three billion year old rock fragment.

In the study, published today in the journal Nature, a scientist describes the new technique and shows how it can be used to analyse tiny samples of molten rock called magma, yielding important clues about the Earth’s early history.

Working in conjunction with Australian and US scientists, an Imperial College London researcher analysed a magma using the Chicago synchrotron, a kilometre sized circular particle accelerator that is commonly used to probe the structure of materials.

In this case, the team used its X-rays to investigate the chemistry of a rare type of magmatic rock called a komatiite which was preserved for billions of years in crystals.

It has previously been difficult to discover how these komatiites formed because earlier analytical techniques lacked the power to provide key pieces of information.

Now, thanks to the new technique, the team has found that komatiites were formed in the Earth’s mantle, a region between the crust and the core, at temperatures of around 1,700 degrees Celsius, more than 2.7 billion years ago.

These findings dispel a long held alternative theory which suggested that komatiites were formed at much cooler temperatures, and also yields an important clue about the mantle’s early history. They found that the mantle has cooled by 300 degrees Celsius over the 2.7 billion year period

Lead researcher, Dr Andrew Berry, from Imperial College London’s Department of Earth Science and Engineering, says more research needs to be done to understand fully the implications of this finding. However, he believes this new technique will enable scientists to uncover more details about the Earth’s early history. He says:

“It has long been a ‘holy grail’ in geology to find a technique that analyses the chemical state of tiny rock fragments, because they provide important geological evidence to explain conditions inside the early Earth. This research resolves the controversy about the origin of komatiites and opens the door to the possibility of new discoveries about our planet’s past.”

In particular, Dr Berry believes this technique can now be used to explain Earth’s internal processes such as the rate at which its interior has been cooling, how the forces affecting the Earth’s crust have changed over time, and the distribution of radioactive elements which internally heat the planet.

He believes this information could then be used to build new detailed models to explain the evolution of the planet. He concludes:

“It is amazing that we can look at a fragment of magma only a fraction of a millimetre in size and use it to determine the temperature of rocks tens of kilometres below the surface billions of years ago. How’s that for a piece of detective work?”

Colin Smith | alfa
Further information:

Further reports about: 21st Century Magma X-rays ancient rock molten rock

More articles from Earth Sciences:

nachricht Gas hydrate research: Advanced knowledge and new technologies
23.03.2018 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

nachricht New technologies and computing power to help strengthen population data
22.03.2018 | University of Southampton

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>