Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

2011 Virginia quake triggered landslides at extraordinary distances

06.11.2012
Landslides surpassed previously known limits worldwide

The 2011 Mineral, Virginia M-5.8 earthquake was felt over an extraordinarily large area. A new study details landslides triggered by the earthquake at distances four times greater and over an area 20 times larger than previously documented for M-5.8 earthquakes worldwide.

The study, to be published in the December issue of the Bulletin of the Seismological Society of America (BSSA), describes physical confirmation of previous observations that ground shaking from earthquakes in the eastern U.S. travels farther than in the western U.S, a plate-boundary region.

U.S. Geological Survey scientists Randall W. Jibson, who is scheduled to present his findings on Nov. 6 at the annual meeting of the Geological Society of America, and co-author Edwin L. Harp painstakingly mapped rock falls to determine the distance limits from the epicenter to compare with previously documented earthquakes.

The 2011 Virginia earthquake was the largest earthquake in the eastern U.S. since 1897. Although it did not produce large, damaging landslides, it did trigger small landslides of rock and soil from steep slopes.

Because landslides can occur without earthquake shaking, Jibson and Harp looked for evidence of recent physical disruption that could be attributed to the quake. From August 25 though September 3, Jibson and Harp made detailed observations by driving outward from the epicentral area in transects; they stopped frequently to get on their hands and knees to overturn rocks to see whether there was green grass underneath – a sign that the rock could have fallen during the quake. As they drove, they inspected highly susceptible slopes until they had reached an apparent limit for a particular area.

"We've been doing this for more than 30 years and have developed a consistent observational standard that isn't dependent on the observers," Jibson said. "We are confident we can accurately compare limits for different earthquakes."

The authors noted that Hurricane Irene passed near the area a few days after the quake, and they identified small rainfall-triggered debris flows that were quite distinct from rock falls triggered by the quake.

Landslide limits were documented along the Blue Ridge Parkway from near Harpers Ferry, West Virginia, southwestward to within 30 km of the Virginia-North Carolina border as well as on transects northwestward through the Appalachian Mountains into West Virginia. The limits to the east and south of the Blue Ridge are less well constrained owing to a lack of susceptible slopes. The authors propose an estimated elliptical area had there been equally susceptible landscape yielding evidence in all areas.

There is sufficient documented evidence, say Jibson and Harp, to suggest the need to revise the established distance limits for the occurrence of landslides in different tectonic environments.

For the eastern U.S., the documented landslides from the 2011 Virginia earthquake suggest that ground motion is stronger and travels farther parallel to the Appalachian Mountains than perpendicular to them, which is consistent with other sources of intensity information such as the U.S. Geological Survey's Did You Feel It? map.

Not all historical post-earthquake landslide investigations have been conducted at the same level of detail, and so they might not be directly comparable with the current study. Also, very few earthquakes in stable continental interiors, where ground motion is known to travel farther than in plate-boundary regions, have had thorough documentations of triggered landslides, noted the authors.

"Even taking differential landslide reporting into account," wrote the authors, "the landslide limits from the 2011 Virginia earthquake are extraordinary."

The paper, "Extraordinary Distance Limits of Landslides Triggered by the 2011 Mineral, Virginia Earthquake," will be published in the December issue, volume 102:6, of BSSA. The journal is published by the Seismological Society of America, which is an international scientific society devoted to the advancement of seismology and the understanding of earthquakes for the benefit of society.

Nan Broadbent | EurekAlert!
Further information:
http://www.seismosoc.org/

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>