Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

2011 Virginia quake triggered landslides at extraordinary distances

06.11.2012
Landslides surpassed previously known limits worldwide

The 2011 Mineral, Virginia M-5.8 earthquake was felt over an extraordinarily large area. A new study details landslides triggered by the earthquake at distances four times greater and over an area 20 times larger than previously documented for M-5.8 earthquakes worldwide.

The study, to be published in the December issue of the Bulletin of the Seismological Society of America (BSSA), describes physical confirmation of previous observations that ground shaking from earthquakes in the eastern U.S. travels farther than in the western U.S, a plate-boundary region.

U.S. Geological Survey scientists Randall W. Jibson, who is scheduled to present his findings on Nov. 6 at the annual meeting of the Geological Society of America, and co-author Edwin L. Harp painstakingly mapped rock falls to determine the distance limits from the epicenter to compare with previously documented earthquakes.

The 2011 Virginia earthquake was the largest earthquake in the eastern U.S. since 1897. Although it did not produce large, damaging landslides, it did trigger small landslides of rock and soil from steep slopes.

Because landslides can occur without earthquake shaking, Jibson and Harp looked for evidence of recent physical disruption that could be attributed to the quake. From August 25 though September 3, Jibson and Harp made detailed observations by driving outward from the epicentral area in transects; they stopped frequently to get on their hands and knees to overturn rocks to see whether there was green grass underneath – a sign that the rock could have fallen during the quake. As they drove, they inspected highly susceptible slopes until they had reached an apparent limit for a particular area.

"We've been doing this for more than 30 years and have developed a consistent observational standard that isn't dependent on the observers," Jibson said. "We are confident we can accurately compare limits for different earthquakes."

The authors noted that Hurricane Irene passed near the area a few days after the quake, and they identified small rainfall-triggered debris flows that were quite distinct from rock falls triggered by the quake.

Landslide limits were documented along the Blue Ridge Parkway from near Harpers Ferry, West Virginia, southwestward to within 30 km of the Virginia-North Carolina border as well as on transects northwestward through the Appalachian Mountains into West Virginia. The limits to the east and south of the Blue Ridge are less well constrained owing to a lack of susceptible slopes. The authors propose an estimated elliptical area had there been equally susceptible landscape yielding evidence in all areas.

There is sufficient documented evidence, say Jibson and Harp, to suggest the need to revise the established distance limits for the occurrence of landslides in different tectonic environments.

For the eastern U.S., the documented landslides from the 2011 Virginia earthquake suggest that ground motion is stronger and travels farther parallel to the Appalachian Mountains than perpendicular to them, which is consistent with other sources of intensity information such as the U.S. Geological Survey's Did You Feel It? map.

Not all historical post-earthquake landslide investigations have been conducted at the same level of detail, and so they might not be directly comparable with the current study. Also, very few earthquakes in stable continental interiors, where ground motion is known to travel farther than in plate-boundary regions, have had thorough documentations of triggered landslides, noted the authors.

"Even taking differential landslide reporting into account," wrote the authors, "the landslide limits from the 2011 Virginia earthquake are extraordinary."

The paper, "Extraordinary Distance Limits of Landslides Triggered by the 2011 Mineral, Virginia Earthquake," will be published in the December issue, volume 102:6, of BSSA. The journal is published by the Seismological Society of America, which is an international scientific society devoted to the advancement of seismology and the understanding of earthquakes for the benefit of society.

Nan Broadbent | EurekAlert!
Further information:
http://www.seismosoc.org/

More articles from Earth Sciences:

nachricht Large-Mouthed Fish Was Top Predator After Mass Extinction
26.07.2017 | Universität Zürich

nachricht Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds
25.07.2017 | University of Illinois at Urbana-Champaign

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>