Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

2011 Draconid meteor shower deposited a ton of meteoritic material on Earth

07.06.2013
With more than 400 meteors per hour, it was one of the most intense meteor showers in the last decade

Every 6.6 years, the comet Giacobini-Zinner circulates through the inner solar system and passes through the perihelion, the closest point to the Sun of its orbit. Then, the comet sublimates the ices and ejects a large number of particles that are distributed in filaments.

The oldest of these particles have formed a swarm that the Earth passes trough every year in early October. The result is a Draconid meteor shower –meteors from this comet come from the northern constellation Draco–, which hits the Earth's atmosphere at about 75,000 km/h, a relatively slow speed in comparison with other meteoric swarms.

Josep Maria Trigo, researcher from the CSIC Institute of Space Sciences (ICE), states: "When a comet approaches the Sun, it sublimates part of its superficial ice and the gas pressure drives a huge number of particles that adopt orbits around the Sun, forming authentic swarms. The study shows that in the evening from October 8th to 9th 2011, the Earth intercepted three dense spindles of particles left behind by the comet when it crossed through the perihelion".

The researchers, who published their results in the Monthly Notices of the Royal Astronomical Society magazine, have obtained the orbits of twenty meteors in the solar system. Thus, they have confirmed the origin of the particles that caused the outbreak in that periodic comet. For this, they have count on 25 video-detection stations operated by the Spanish Meteor and Firewall Network (SPMN) and the collaboration of amateur astronomers.

Two of those filaments of meteoroids, which had been theoretically predicted already, have been identified by scientists with those left by the comet in 1874, 1894 and 1900. Nevertheless, researchers have confirmed that there was another dense region intercepted by the Earth which had not been predicted and that involves a new challenge for theoretical models.

In a second article, researchers analyze the chemical composition of six fireballs from that swarm of the comet recorded during the outbreak. José María Madiedo, researcher from the University of Huelva and coordinator of this second study, asserts: "One of them, with an initial mass of 6 kg and nearly half a meter in diameter, named Lebrija in honor of the city it over flew, came to compete with the brightness of the moon that night".

The six analyzed fragments have a possibly similar composition to the carbonaceous chondrites (a type of organic-rich meteorites) but they are much more fragile. Trigo emphasizes: "They don't seem to have suffered any chemical alteration during their brief stay in the interplanetary environment, which turns out to be very interesting to confirm the astrobiological role of these particles in the continuous transportation of water and organic material to the Earth".

Alda Ólafsson | EurekAlert!
Further information:
http://www.csic.es

More articles from Earth Sciences:

nachricht NASA sees quick development of Hurricane Dora
27.06.2017 | NASA/Goddard Space Flight Center

nachricht Collapse of the European ice sheet caused chaos
27.06.2017 | CAGE - Center for Arctic Gas Hydrate, Climate and Environment

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>