Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

2010 spike in Greenland ice loss lifted bedrock, GPS reveals

09.12.2011
An unusually hot melting season in 2010 accelerated ice loss in southern Greenland by 100 billion tons – and large portions of the island’s bedrock rose an additional quarter of an inch in response.

That’s the finding from a network of nearly 50 GPS stations planted along the Greenland coast to measure the bedrock’s natural response to the ever-diminishing weight of ice above it.

Every year as the Greenland Ice Sheet melts, the rocky coast rises, explained Michael Bevis, Ohio Eminent Scholar in Geodynamics and professor in the School of Earth Sciences at Ohio State University. Some GPS stations around Greenland routinely detect uplift of 15 mm (0.59 inches) or more, year after year. But a temperature spike in 2010 lifted the bedrock a detectably higher amount over a short five-month period – as high as 20 mm (0.79 inches) in some locations.

In a presentation Friday at the American Geophysical Union meeting in San Francisco, Bevis described the study’s implications for climate change.

“Pulses of extra melting and uplift imply that we’ll experience pulses of extra sea level rise,” he said. “The process is not really a steady process.”

Because the solid earth is elastic, Bevis and his team can use the natural flexure of the Greenland bedrock to measure the weight of the ice sheet, just like the compression of a spring in a bathroom scale measures the weight of the person standing on it.

Bevis is the principal investigator for the Greenland GPS Network (GNET), and he’s confident that the anomalous 2010 uplift that GNET detected is due to anomalous ice loss during 2010: “Really, there is no other explanation. The uplift anomaly correlates with maps of the 2010 melting day anomaly. In locations where there were many extra days of melting in 2010, the uplift anomaly is highest.”

In scientific parlance, a melting day “anomaly” refers to the number of extra melting days – that is, days that were warm enough to melt ice – relative to the average number of melting days per year over several decades.

In 2010, the southern half of Greenland lost an extra 100 billion tons of ice under conditions that scientists would consider anomalously warm.

GNET measurements indicate that as that ice melted away, the bedrock beneath it rose. The amount of uplift differed from station to station, depending on how close the station was to regions where ice loss was greatest.

Southern Greenland stations that were very close to zones of heavy ice loss rose as much as 20 mm (about 0.79 inches) over the five months. Even stations that were located far away typically rose at least 5 mm (0.2 inches) during the course of the 2010 melting season. But stations in the North of Greenland barely moved at all.

From 2007 to 2009, GNET installed GPS stations in the bedrock that lay exposed around the ice sheet margins along the Greenland coast. The research team is using the earth’s natural elasticity of to “weigh” the ice. As previous Ohio State studies of Antarctica revealed, ice weighs down bedrock, and when the ice melts away, the bedrock rises measurably in response.

GNET and similar GPS networks around the world could thus allow scientists to continue to measure ice loss after the Gravity Recovery and Climate Experiment (GRACE) satellites are retired in 2015. (GRACE is a joint project of NASA and the German Aerospace Center.)

Bevis’ coauthors in the School of Earth Sciences at Ohio State include Abel K. Brown, Eric C. Kendrick, Jason E. Box, Dana John Caccamise, Hao Zhou, Jian Wang, and Terry J. Wilson.

Their colleagues include John M. Wahr of the University of Colorado, Boulder; Shfaqat Abbas Khan, Finn Bo Madsen, and Per Knudsen of the Danish Technical University in Copenhagen; Michael J Willis of Cornell University; Tonie M. van Dam and Olivier Francis of the University of Luxembourg; Bjorn Johns, Thomas Nylen, and Seth White of UNAVCO, Inc, in Boulder; Robin Abbott of CH2M HILL Polar Services, in Boulder; and Rene Forsberg of the Space Institute, Denmark.

GNET is funded by the National Science Foundation.

Contact: Michael Bevis, (614) 247-5071; Bevis.6@osu.edu
Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu

Michael Bevis | EurekAlert!
Further information:
http://www.osu.edu

More articles from Earth Sciences:

nachricht Sediment from Himalayas may have made 2004 Indian Ocean earthquake more severe
26.05.2017 | Oregon State University

nachricht Devils Hole: Ancient Traces of Climate History
24.05.2017 | Universität Innsbruck

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>