Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

2010 Chilean earthquake causes icequakes in Antarctica

11.08.2014

Technology allows scientists to hear seismic waves as they arrived on frozen continent

Seismic events aren't rare occurrences on Antarctica, where sections of the frozen desert can experience hundreds of micro-earthquakes an hour due to ice deformation. Some scientists call them icequakes. But in March of 2010, the ice sheets in Antarctica vibrated a bit more than usual because of something more than 3,000 miles away: the 8.8-magnitude Chilean earthquake.


High-frequency icequakes are shown at station HOWD in Antarctica during the distant waves of the 2010 magnitude 8.8 Chile earthquake. The triggered icequakes are indicated by the narrow vertical bands in the middle and lower sections of the graphic. They begin when the P wave arrives approximately 8 minutes (480 seconds) after the Chilean quake and continue through the arrival of the Rayleigh waves. The sound is generated by speeding up the HOWD's seismic data 100 times.

Credit: Georgia Tech

A new Georgia Institute of Technology study published in Nature Geoscience is the first to indicate that Antarctica's frozen ground is sensitive to seismic waves from distant earthquakes.

To study the quake's impact on Antarctica, the Georgia Tech team looked at seismic data from 42 stations in the six hours before and after the 3:34 a.m. event. The researchers used the same technology that allowed them to "hear" the seismic response at large distances for the devastating 2011 magnitude 9 Japan earthquake as it rumbled through the earth.

In other words, they simply removed the longer-period signals as the seismic waves spread from the distant epicenter to identify high-frequency signals from nearby sources. Nearly 30 percent (12 of the 42 stations) showed clear evidence of high-frequency seismic signals as the surface-wave arrived on Antarctica.

"We interpret these events as small icequakes, most of which were triggered during or immediately after the passing of long-period Rayleigh waves generated from the Chilean mainshock," said Zhigang Peng, an associate professor in the School of Earth and Atmospheric Sciences who led the study. "This is somewhat different from the micro-earthquakes and tremor caused by both Love and Rayleigh-type surface waves that traditionally occur in other tectonically active regions thousands of miles from large earthquakes.

Peng says the subtle difference is that micro-earthquakes respond to both shearing and volumetric deformation from distant events. The newly found icequakes respond only to volumetric deformation.

"Such differences may be subtle, but they tell us that the mechanism of these triggered icequakes and small earthquakes are different," Peng added. "One is more like cracking, while the other is like a shear slip event. It's similar to two hands passing each other."

Some of the icequakes were quick bursts and over in less than one second. Others were long duration, tremor-like signals up to 10 seconds. They occurred in various parts of the continent, including seismic stations along the coast and near the South Pole.

The researchers found the clearest indication of induced high-frequency signals at station HOWD near the northwest corner of the Ellsworth Mountains. Short bursts occurred when the P wave hit the station, then continued again when the Rayleigh wave arrived. The triggered icequakes had very similar high waveform patterns, which indicates repeated failure at a single location, possibly by the opening of cracks.

Peng says the source locations of the icequakes are difficult to determine because there isn't an extensive seismic network coverage in Antarctica.

"But at least some of the icequakes themselves create surface waves, so they are probably formed very close to the ice surface," he added. "While we cannot be certain, we suspect they simply reflect fracturing of ice in the near surface due to alternating volumetric compressions and expansions as the Rayleigh waves passed through Antarctica's frozen ice."

Antarctica was originally not on the research team's target list. While examining seismic stations in the Southern Hemisphere, Peng "accidently" found the triggered icequakes at a few openly available stations. He and former Georgia Tech postdoctoral student Jake Walter (now a research scientist at the Institute for Geophysics at UT Austin) then reached out to other seismologists (the paper's four co-authors) who were in charge of deploying more broadband seismometers in Antarctica.

###

This project is partially supported by a National Science Foundation CAREER grant (EAR-0956051). Any conclusions expressed are those of the principal investigator and may not necessarily represent the official views of the NSF.

Jason Maderer | Eurek Alert!
Further information:
http://www.gatech.edu

Further reports about: Antarctica Chilean earthquake earthquakes micro-earthquakes seismometers signals waves

More articles from Earth Sciences:

nachricht NASA's AIM observes early noctilucent ice clouds over Antarctica
05.12.2016 | NASA/Goddard Space Flight Center

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>