Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

20-year study yields precise model of tectonic-plate movements

24.03.2010
A new model of the Earth, 20 years in the making, describes a dynamic three-dimensional puzzle of planetary proportions.

Created by University of Wisconsin-Madison geophysicist Chuck DeMets and longtime collaborators Richard Gordon of Rice University and Donald Argus of NASA's Jet Propulsion Laboratory, the model offers a precise description of the relative movements of 25 interlocking tectonic plates that account for 97 percent of the Earth's surface.

"This model can be used to predict the movement of one plate relative to any other plate on the Earth's surface," explains DeMets. "Plate tectonics describes almost everything about how the Earth's surface moves and deforms, but it's remarkably simple in a mathematical way."

Tectonic plates are in constant motion, sliding past one another as they float atop the planet's molten interior. The collisions and shifts can create mountain ranges or cause earthquakes like the ones that struck Haiti and Chile this year.

"We live on a dynamic planet, and it's important to understand how the surface of the planet changes," Gordon says. "The frequency and magnitude of earthquakes depend upon how the tectonic plates move. Understanding how plates move can help us understand surface processes like mountain-building and subsurface processes like mantle convection."

The new model, dubbed MORVEL for "mid-ocean ridge velocities," is described in an extensive article available online and slated for the April issue of Geophysical Journal International. The work builds on the collaborators' 1990 paper on tectonic plate velocities that has been cited more than 2,000 times by other scientists. During the past 20 years, the researchers have incorporated more and higher-quality data to improve the model's resolution and precision.

About three-quarters of MORVEL's data come from Earth's mid-ocean ridges, the undersea boundaries between tectonic plates. At these ridges, new crust forms constantly as magma wells up from beneath the planet's surface and forces the plates apart.

To judge how fast the plates are spreading, the team analyzed nearly 2,000 magnetic profiles of the crust formed at mid-ocean ridges in all the major ocean basins. The Earth's magnetic field changes polarity at irregular intervals — most recently about 780,000 years ago — and each time leaves a magnetic mark in the crust akin to a tree ring. Measuring the distances between the marks tells them how quickly new crust is being formed. Most plate boundaries are currently moving at rates of 15 to 200 millimeters per year, DeMets says.

MORVEL also allows scientists to predict future plate movements and identify places where movements have changed over time, areas that are useful for studying the underlying forces that control plate movements.

"Along the boundaries where plates meet there are lots of active faults. It's useful to know how quickly the plates are slipping across those faults because it gives you some feeling about how often large earthquakes might occur," DeMets says. "The direction of movement across the faults gives some indication of whether plates are moving toward one another, which gives rise to one kind of faulting and seismic hazard, or slightly away from each other, which gives rise to another kind of faulting and a different type of seismic hazard."

The model is accessible online at http://www.geology.wisc.edu/~chuck/MORVEL/, a site that can be used to show present-day plate movements by choosing any location in the world.

The work was supported by the National Science Foundation and NASA.

Chuck DeMets | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Earth Sciences:

nachricht NASA sees quick development of Hurricane Dora
27.06.2017 | NASA/Goddard Space Flight Center

nachricht Collapse of the European ice sheet caused chaos
27.06.2017 | CAGE - Center for Arctic Gas Hydrate, Climate and Environment

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>