Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

2 NASA satellites see Typhoon Songda weaken and move past Japan

01.06.2011
NASA's Tropical Rainfall Measuring Mission and Aqua satellite provided forecasters some insights into the behavior of Super Typhoon Songda over the past weekend. Former Super typhoon Songda brought rainfall to parts of Japan over the weekend and today marine warnings for high surf remain in several Sub-prefecture regions as extra-tropical depression Sondga's remnants push further out to sea.

Sub-prefecture regions of Nemuro Chiho, Kushiro Chiho, and Tokachi Chiho still have high wave advisories in place today, May 31, 2011, from the Japanese Meteorological Agency as Sondga's remnants continue moving into the open waters of the Northwestern Pacific Ocean.


This image of Typhoon Sondga's rainfall was captured by NASA's TRMM satellite on Saturday, May 28. Notice that the outer fringes of the storm brushed by Taiwan (left). The strongest rainfall (about 2 inches/50 mm per hour) appears in red. The yellow and green areas are moderate rainfall falling at a rate between .78 and 1.57 inches (20 and 40 mm) per hour. Credit: Credit: NASA/SSAI, Hal Pierce

On Sunday, May 30, BBC News reported that as Songda continued its northeasterly journey past Japan, the work at the Fukushima nuclear plant was suspended until the storm had passed.

On Saturday, May 29 at 1500 UTC (11 a.m. EDT) Songda had weakened to a depression with maximum sustained winds near 30 knots (34 mph/55 kmh). It was located 300 miles (482 km) west-southwest of Yokosuka, Japan near 34.4 North and 136.6 East. It was moving to the northeast at 26 knots (30 mph/48 kmh).

Earlier, Songda made landfall over the Wakayama prefecture and weakened. It then reemerged over water and moved east-northeast while transitioning into an extra-tropical storm.

According to Stars and Stripes newspaper, the Kadena Air Base (island) issued an "all clear" on Sunday May 29 at 7:56 a.m. local/Japan time for most areas of Okinawa. Down powerlines were reported at Marine Corps Air Station Futenma due to downed power lines.

On Saturday, May 28, Kadena Air Base experienced strong winds and a lot of rainfall in a short period of time as it Songda moved north-northeast. At 1500 UTC (11 a.m. EDT), Kadena Air Base reported sustained winds of 52 knots (60 mph/96 kmh), gusting to 61 knots (70 mph/113 kmh). Rainfall totals were as much as 21 inches (52 centimeters) in 3 hours!

At that time, Songda's center was just 60 miles (96 km) west of Kadena Air Base, Japan, so its center did not cross the island. At that time its maximum sustained winds around the low-level center were near 75 knots (86 mph/139 kmh) and it was still a Category 1 typhoon. It was generating very rough seas at the time reported wave heights were near 37 feet (~11 meters).

Typhoon Sondga's rainfall was captured by NASA's TRMM satellite on Saturday, May 28 at 0613 UTC (1:13 a.m. EDT). At that time, the outer fringes of the storm brushed by Taiwan. The strongest rainfall (about 2 inches/50 mm per hour) remained at sea and was mostly confined to the northwestern quadrant of the storm. Most of the rainfall in the storm was moderate, falling at a rate between .78 and 1.57 inches (20 and 40 mm) per hour.

Stars and Stripes newspaper reported that before Songda approached Kadena Air Base the "Navy's 7th Fleet has moved assets out of port at Yokosuka Naval Base. That fleet included a number of ships including flagship USS Blue Ridge and four destroyers: Fitzgerald, McCain, Mustin and Curtis Wilbur." The newspaper reported that two vessels stayed in port for maintenance and others at sea shifted their navigation away from the storm.

On May 27 at 2100 UTC (5 p.m. EDT) Typhoon Songda was 385 miles (619 km) southwest of Kadena Air Base, Japan and its maximum sustained winds were near 115 knots (132 mph/213 kmh).

The Moderate Resolution Imaging Spectroradiometer (MODIS) instrument onboard NASA's Aqua satellite captured a visible image of Songda on May 27 at 05:10 UTC (1:10 a.m. EDT) when it was a super typhoon off shore from the northern Philippines. At that time, Songda still had an eye.

By 17:11 UTC (1:11 p.m. EDT) another satellite image showed a changing story. At that time, an infrared image was taken by the Atmospheric Infrared Sounder (AIRS) instrument onboard NASA's Aqua satellite as Songda's center was parallel to the southern tip of Taiwan, but far to the east at Sea. At that time, the eye was no longer visible in this image, indicating that the storm is weakening. Fortunately increased wind shear kicked up and continued weakening the storm by the time it approached Kadena Air Base.

One aspect of the infrared imagery that was impressive is the extent of the clouds connected to Songda. The infrared imagery shows what looks like a tail of clouds extending to the northeast that stretches from Taiwan into northern Japan.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov

Further reports about: Ambient Air Aqua satellite EDT NASA Pacific Ocean Songda Super TRMM satellite Typhoon UTC infrared imagery rainfall

More articles from Earth Sciences:

nachricht Predicting eruptions using satellites and math
28.06.2017 | Frontiers

nachricht NASA sees quick development of Hurricane Dora
27.06.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>