Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


2 NASA satellites see Typhoon Songda weaken and move past Japan

NASA's Tropical Rainfall Measuring Mission and Aqua satellite provided forecasters some insights into the behavior of Super Typhoon Songda over the past weekend. Former Super typhoon Songda brought rainfall to parts of Japan over the weekend and today marine warnings for high surf remain in several Sub-prefecture regions as extra-tropical depression Sondga's remnants push further out to sea.

Sub-prefecture regions of Nemuro Chiho, Kushiro Chiho, and Tokachi Chiho still have high wave advisories in place today, May 31, 2011, from the Japanese Meteorological Agency as Sondga's remnants continue moving into the open waters of the Northwestern Pacific Ocean.

This image of Typhoon Sondga's rainfall was captured by NASA's TRMM satellite on Saturday, May 28. Notice that the outer fringes of the storm brushed by Taiwan (left). The strongest rainfall (about 2 inches/50 mm per hour) appears in red. The yellow and green areas are moderate rainfall falling at a rate between .78 and 1.57 inches (20 and 40 mm) per hour. Credit: Credit: NASA/SSAI, Hal Pierce

On Sunday, May 30, BBC News reported that as Songda continued its northeasterly journey past Japan, the work at the Fukushima nuclear plant was suspended until the storm had passed.

On Saturday, May 29 at 1500 UTC (11 a.m. EDT) Songda had weakened to a depression with maximum sustained winds near 30 knots (34 mph/55 kmh). It was located 300 miles (482 km) west-southwest of Yokosuka, Japan near 34.4 North and 136.6 East. It was moving to the northeast at 26 knots (30 mph/48 kmh).

Earlier, Songda made landfall over the Wakayama prefecture and weakened. It then reemerged over water and moved east-northeast while transitioning into an extra-tropical storm.

According to Stars and Stripes newspaper, the Kadena Air Base (island) issued an "all clear" on Sunday May 29 at 7:56 a.m. local/Japan time for most areas of Okinawa. Down powerlines were reported at Marine Corps Air Station Futenma due to downed power lines.

On Saturday, May 28, Kadena Air Base experienced strong winds and a lot of rainfall in a short period of time as it Songda moved north-northeast. At 1500 UTC (11 a.m. EDT), Kadena Air Base reported sustained winds of 52 knots (60 mph/96 kmh), gusting to 61 knots (70 mph/113 kmh). Rainfall totals were as much as 21 inches (52 centimeters) in 3 hours!

At that time, Songda's center was just 60 miles (96 km) west of Kadena Air Base, Japan, so its center did not cross the island. At that time its maximum sustained winds around the low-level center were near 75 knots (86 mph/139 kmh) and it was still a Category 1 typhoon. It was generating very rough seas at the time reported wave heights were near 37 feet (~11 meters).

Typhoon Sondga's rainfall was captured by NASA's TRMM satellite on Saturday, May 28 at 0613 UTC (1:13 a.m. EDT). At that time, the outer fringes of the storm brushed by Taiwan. The strongest rainfall (about 2 inches/50 mm per hour) remained at sea and was mostly confined to the northwestern quadrant of the storm. Most of the rainfall in the storm was moderate, falling at a rate between .78 and 1.57 inches (20 and 40 mm) per hour.

Stars and Stripes newspaper reported that before Songda approached Kadena Air Base the "Navy's 7th Fleet has moved assets out of port at Yokosuka Naval Base. That fleet included a number of ships including flagship USS Blue Ridge and four destroyers: Fitzgerald, McCain, Mustin and Curtis Wilbur." The newspaper reported that two vessels stayed in port for maintenance and others at sea shifted their navigation away from the storm.

On May 27 at 2100 UTC (5 p.m. EDT) Typhoon Songda was 385 miles (619 km) southwest of Kadena Air Base, Japan and its maximum sustained winds were near 115 knots (132 mph/213 kmh).

The Moderate Resolution Imaging Spectroradiometer (MODIS) instrument onboard NASA's Aqua satellite captured a visible image of Songda on May 27 at 05:10 UTC (1:10 a.m. EDT) when it was a super typhoon off shore from the northern Philippines. At that time, Songda still had an eye.

By 17:11 UTC (1:11 p.m. EDT) another satellite image showed a changing story. At that time, an infrared image was taken by the Atmospheric Infrared Sounder (AIRS) instrument onboard NASA's Aqua satellite as Songda's center was parallel to the southern tip of Taiwan, but far to the east at Sea. At that time, the eye was no longer visible in this image, indicating that the storm is weakening. Fortunately increased wind shear kicked up and continued weakening the storm by the time it approached Kadena Air Base.

One aspect of the infrared imagery that was impressive is the extent of the clouds connected to Songda. The infrared imagery shows what looks like a tail of clouds extending to the northeast that stretches from Taiwan into northern Japan.

Rob Gutro | EurekAlert!
Further information:

Further reports about: Ambient Air Aqua satellite EDT NASA Pacific Ocean Songda Super TRMM satellite Typhoon UTC infrared imagery rainfall

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>