Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

2 NASA satellites catch Tropical Storm Nate's quick formation

09.09.2011
NASA's Aqua and TRMM satellites were on guard when Tropical Storm Nate developed late in the day yesterday, Sept. 7 in the Bay of Campeche near the east coast of Mexico. The satellites measured cloud height, temperature and rainfall rates and found the heaviest rainfall on the southern side of the tropical storm.

The Atmospheric Infrared Sounder (AIRS) instrument on NASA's Aqua satellite took an infrared image of Tropical Storm Nate on Sept. 7 at 3:59 p.m. EDT, one hour before Nate was named a tropical storm. The infrared data showed the coldest cloud top temperatures (-63 Fahrenheit/-52 Celsius) and strongest thunderstorms with the heaviest rainfall were still off-shore from eastern Mexico and over the Bay of Campeche. On the morning of Sept. 8, the strongest convection (rapidly rising air that forms the thunderstorms that power a tropical cyclone) were mostly in the southwest quadrant of the storm.


NASA's TRMM satellite flew over Nate on Sept. 7 at 1812 UTC (2:12 p.m. EDT), a couple of hours before being designated a tropical storm. Cloud tops were up to 14km (~8.7 miles) high south of Nate's center. The yellow and green areas indicate moderate rainfall between .78 to 1.57 inches per hour. Red areas are considered heavy rainfall at almost 2 inches (50 mm) per hour. Credit: Credit: SSAI/NASA, Hal Pierce

Today, Nate is still meandering around in the Bay of Campeche with nothing to guide him, but that will change over the weekend as a ridge (elongated area) of high pressure is expected to develop over Mexico and bring Nate westward.

A tropical storm warning is in effect in Mexico from Chilitepec to Celestun, where 2 to 4 inches of rainfall is expected with isolated amounts as high as 8 inches in the Mexican states of Campeche, Tabasco and southern Veracruz. Tropical storm-force winds are expected today in the warning area. Nate is expected to create a storm surge of 1 to 3 feet above normal tidal levels in the warning area along the immediate coast.

At 8 a.m. EDT on Sept. 8, Nate's maximum sustained winds were near 45 mph, and are expected to strengthen in the warm waters of the Bay. Nate was located about 125 miles (200 km) west of Campeche Mexico near 20.2 North and 92.4 West. Nate is creeping to the southeast near 1 mph (2 kmh) and has a minimum central pressure of 1003 millibars.

The TRMM satellite, which is managed by both NASA and the Japanese Space Agency, got a good look at the rainfall rates occurring in Nate yesterday. The Tropical Rainfall Measuring Mission (TRMM) satellite flew over Nate on Sept. 7 at 1812 UTC (2:12 p.m. EDT), a couple of hours before being designated a tropical storm. Data from TRMM's Precipitation Radar (PR) showed that the forming tropical cyclone had areas of heavy convection with cloud tops reaching to heights of about 14km (~8.7 miles) south of Nate's center of circulation. That coincides with the infrared data from NASA's Aqua satellite, which showed the coldest, highest cloud tops in that same area. The strongest rainfall was on the south-southwestern quadrant where rainfall rates were as high as 2 inches (50 mm) per hour.

The forecast from the National Hurricane Center calls for Nate to become a hurricane over the weekend and make landfall in eastern Mexico early next week.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>