Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

2 Greenland glaciers lose enough ice to fill Lake Erie

24.05.2011
A new study aimed at refining the way scientists measure ice loss in Greenland is providing a “high-definition picture” of climate-caused changes on the island.

And the picture isn’t pretty.

In the last decade, two of the largest three glaciers draining that frozen landscape have lost enough ice that, if melted, could have filled Lake Erie.

The three glaciers – Helheim, Kangerdlugssuaq and Jakobshavn Isbrae – are responsible for as much as one-fifth of the ice flowing out from Greenland into the ocean.

“Jakobshavn alone drains somewhere between 15 and 20 percent of all the ice flowing outward from inland to the sea,” explained Ian Howat, an assistant professor of earth sciences at Ohio State University. His study appears in the current issue of the journal Geophysical Research Letters.

As the second largest holder of ice on the planet, and the site of hundreds of glaciers, Greenland is a natural laboratory for studying how climate change has affected these ice fields.

Researchers focus on the “mass balance” of glaciers, the rate of new ice being formed as snow falls versus the flow of ice out into the sea.

The new study suggests that, in the last decade, Jakobshavn Isbrae has lost enough ice to equal 11 years’ worth of normal snow accumulation, approximately 300 gigatons (300 billion tons) of ice.

“Kangerdlugssuaq would have to stop flowing and accumulate snowfall for seven years to regain the ice it has lost,” said Howat, also a member of the Byrd Polar Research Center at Ohio State.

Surprisingly, the researchers found that the third glacier, Helheim, had actually gained a small amount of mass over the same period. It gained approximately one-fifteenth of what Jakobshavn had lost, Howat said.

The real value of the research, however, is the confirmation that the new techniques Howat and his colleagues developed will provide scientists a more accurate idea of exactly how much ice is being lost.

“These glaciers change pretty quickly. They speed up and then slow down. There’s a pulsing in the flow of ice,” Howat said. “There’s variability, a seasonal cycle and lots of different changes in the rate that ice is flowing through these glaciers.”

Past estimates, he said, have been merely snapshots of what was going on at these glaciers in terms of mass loss. “We really need to sample them very frequently or else we won’t really know how much change has occurred.

“This new research pumps up the resolution and gives us a kind of high-definition picture of ice loss,” he said.

To get this longer-timeframe image, Howat and colleagues drew on data sets provided by at least seven orbiting satellites and airplanes, as well as other sources.

“To get a good picture of what’s going on, we need different tools and each one of these satellites plays an important role and adds more information,” Howat said.

The next step is to look at the next-largest glaciers in Greenland and work their way down through smaller and smaller ice flows.

“Currently, the missing piece is ice thickness data for all of the glaciers, but a NASA aircraft is up there getting it. When that’s available, we’ll be able to apply this technique to the entire Greenland ice sheet and get a monthly total mass balance for the last 10 years or so,” he said.

Along with Howat, Yushin Ahn, a postdoctoral fellow at Ohio State’s Byrd Polar Research Center; Ian Jouglin of the University of Washington; Michael van den Broeke and Jan Lenaerts, both of Utrecht University in the Netherlands, worked on the project.

The work is supported in part by the National Aeronautics and Space Administration and by the Climate, Water and Carbon Program at Ohio State.

Contact: Ian Howat, (614) 247-8944; Howat.4@osu.edu
Written by Earle Holland, (614) 292-8384; Holland.8@osu.edu

Ian Howat | EurekAlert!
Further information:
http://www.osu.edu

Further reports about: Greenland glaciers Lake Baikal Polar Day

More articles from Earth Sciences:

nachricht How is climate change affecting fauna in the Arctic?
22.05.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Sea level as a metronome of Earth's history
19.05.2017 | Université de Genève

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>