Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

13-year Cascadia study complete – and earthquake risk looms large

02.08.2012
A comprehensive analysis of the Cascadia Subduction Zone off the Pacific Northwest coast confirms that the region has had numerous earthquakes over the past 10,000 years, and suggests that the southern Oregon coast may be most vulnerable based on recurrence frequency.
Written by researchers at Oregon State University, and published online by the U.S. Geological Survey, the study concludes that there is a 40 percent chance of a major earthquake in the Coos Bay, Ore., region during the next 50 years. And that earthquake could approach the intensity of the Tohoku quake that devastated Japan in March of 2011.

“The southern margin of Cascadia has a much higher recurrence level for major earthquakes than the northern end and, frankly, it is overdue for a rupture,” said Chris Goldfinger, a professor in OSU’s College of Earth, Ocean, and Atmospheric Sciences and lead author of the study. “That doesn’t mean that an earthquake couldn’t strike first along the northern half, from Newport, Ore., to Vancouver Island.

“But major earthquakes tend to strike more frequently along the southern end – every 240 years or so – and it has been longer than that since it last happened,” Goldfinger added. “The probability for an earthquake on the southern part of the fault is more than double that of the northern end.”

The publication of the peer-reviewed analysis may do more than raise awareness of earthquake hazards and risks, experts say. The actuarial table and history of earthquake strength and frequency may eventually lead to an update in the state’s building codes.

“We are considering the work of Goldfinger, et al, in the update of the National Seismic Hazard Maps, which are the basis for seismic design provisions in building codes and other earthquake risk-mitigation measures,” said Art Frankel, who has dual appointments with the U.S. Geological Survey and the University of Washington.

The Goldfinger-led study took four years to complete and is based on 13 years of research. At 184 pages, it is the most comprehensive overview ever written of the Cascadia Subduction Zone, a region off the Northwest coast where the Juan de Fuca tectonic plate is being subducted beneath the continent. Once thought to be a continuous fault line, Cascadia is now known to be at least partially segmented.

This segmentation is reflected in the region’s earthquake history, Goldfinger noted.

“Over the past 10,000 years, there have been 19 earthquakes that extended along most of the margin, stretching from southern Vancouver Island to the Oregon-California border,” Goldfinger noted. “These would typically be of a magnitude from about 8.7 to 9.2 – really huge earthquakes.

“We’ve also determined that there have been 22 additional earthquakes that involved just the southern end of the fault,” he added. “We are assuming that these are slightly smaller – more like 8.0 – but not necessarily. They were still very large earthquakes that if they happened today could have a devastating impact.”

The clock is ticking on when a major earthquake will next strike, said Jay Patton, an OSU doctoral student who is a co-author on the study.

“By the year 2060, if we have not had an earthquake, we will have exceeded 85 percent of all the known intervals of earthquake recurrence in 10,000 years,” Patton said. “The interval between earthquakes ranges from a few decades to thousands of years. But we already have exceeded about three-fourths of them.”

The last mega-earthquake to strike the Pacific Northwest occurred on Jan. 26, 1700. Researchers know this, Goldfinger said, because written records in Japan document how an ensuing tsunami destroyed that year’s rice crop stored in warehouses.

How scientists document the earthquake history of the Cascadia Subduction Zone is fascinating. When a major offshore earthquake occurs, Goldfinger says, the disturbance causes mud and sand to begin streaming down the continental margins and into the undersea canyons. Coarse sediments called turbidites run out onto the abyssal plain; these sediments stand out distinctly from the fine particulate matter that accumulates on a regular basis between major tectonic events.

By dating the fine particles through carbon-14 analysis and other methods, Goldfinger and colleagues can estimate with a great deal of accuracy when major earthquakes have occurred over the past 10,000 years.

Going back further than 10,000 years has been difficult because the sea level used to be lower and West Coast rivers emptied directly into offshore canyons. Because of that, it is difficult to distinguish between storm debris and earthquake turbidites.

“The turbidite data matches up almost perfectly with the tsunami record that goes back about 3,500 years,” Goldfinger said. “Tsunamis don’t always leave a signature, but those that do through coastal subsidence or marsh deposits coincide quite well with the earthquake history.”

With the likelihood of a major earthquake and possible tsunami looming, coastal leaders and residents face the unenviable task of how to prepare for such events. Patrick Corcoran, a hazards outreach specialist with OSU’s Sea Grant Extension program, says West Coast residents need to align their behavior with this kind of research.

“Now that we understand our vulnerability to mega-quakes and tsunamis, we need to develop a culture that is prepared at a level commensurate with the risk,” Corcoran said. “Unlike Japan, which has frequent earthquakes and thus is more culturally prepared for them, we in the Pacific Northwest have not had a mega-quake since European settlement. And since we have no culture of earthquakes, we have no culture of preparedness.

“The research, though, is compelling,” he added. “It clearly shows that our region has a long history of these events, and the single most important thing we can do is begin ‘expecting’ a mega-quake, then we can’t help but start preparing for it.”

About the OSU College of Earth, Ocean, and Atmospheric Sciences: CEOAS is internationally recognized for its faculty, research and facilities, including state-of-the-art computing infrastructure to support real-time ocean/atmosphere observation and prediction. The college is a leader in the study of the Earth as an integrated system, providing scientific understanding to address complex environmental challenges.

Chris Goldfinger | EurekAlert!
Further information:
http://www.oregonstate.edu

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>