Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


GOES-13 catches Tropical Storm Tomas' early morning strengthening

The GOES-13 satellite keeps a continuous eye on the eastern half of the U.S. and Atlantic Ocean basin, and has provided meteorologists with an infrared look at a strengthening Tropical Storm Tomas this morning.

The Geostationary Operational Environmental Satellites like GOES-13 are managed by NOAA. The NASA GOES Project at NASA's Goddard Space Flight Center in Greenbelt, Md. creates images and animations from the GOES satellite data. When GOES-13 provided an infrared image (because it was taken at night) today, Nov. 2 at 0845 UTC (4:45 a.m. EDT), Tropical Storm Tomas showed a little more organization in its clouds after battling wind shear yesterday.

The GOES-13 satellite captured a strengthening Tropical Storm Tomas this morning, Nov. 2 at 0845 UTC (4:45 a.m. EDT) in infrared imagery. Tomas appears as the rounded area of clouds (bottom right) about 310 miles due south of Port Au Prince, Haiti. In the larger image, the clouds over northwestern Louisiana (top left) are from a low and associated cold front stretching southwest to north-central Mexico.
Credit: NOAA/NASA GOES Project

Infrared satellite data also showed that convection (rapidly rising air that form the thunderstorms that make up a tropical cyclone) has increased or deepened in Tomas. This morning most of that convection and thunderstorm activity is occurring over the eastern and northeastern areas around the center of circulation.

The wind shear over the south-central Caribbean Sea has weakened which has allowed Tomas to gradually re-strengthen. The waters are also much warmer than the 80 degree threshold needed to maintain or strengthen a tropical cyclone. Because of these improving conditions, the National Hurricane Center forecasts that Tomas will continue strengthening until Friday when an upper-level trough (elongated area of low pressure) will push Tomas north-northeastward toward the Windward Passage and parts of Hispaniola.

At 5 a.m. EDT, Tropical Storm Tomas had maximum sustained winds near 50 mph (up from 45 mph on Nov. 1). Tomas is moving west near 12 mph and has a minimum central pressure of 1003 millibars. The center of Tomas is located about 355 miles south of Port-au-Prince, Haiti near 13.5 North and 72.0 West. Tomas is being steered along the southern and southwestern edge of ridge (an elongated area) of high pressure which is moving Tomas west.

To visualize Tomas' movement, picture a penny on a table and move your finger from the bottom of the penny to the left. The penny is the area of high pressure, and your finger would be Tomas. High pressure areas act as a wall that tropical cyclones can't penetrate, so they move around the edges.

Tomas is forecast to become a hurricane on Thursday, Nov. 4 and turn to the northeast, threatening Haiti. Currently there are no watches and warnings in effect, but that's likely to change later this week.

Rob Gutro | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>