Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

1.5°C vs 2°C global warming: new study shows why half a degree matters

21.04.2016

European researchers have found substantially different climate change impacts for a global warming of 1.5°C and 2°C by 2100, the two temperature limits included in the Paris climate agreement. The additional 0.5°C would mean a 10-cm-higher global sea-level rise by 2100, longer heat waves, and would result in virtually all tropical coral reefs being at risk. The research is published today (21 April) in Earth System Dynamics, an open access journal of the European Geosciences Union, and is presented at the EGU General Assembly.

“We found significant differences for all the impacts we considered,” says the study’s lead author Carl Schleussner, a scientific advisor at Climate Analytics in Germany. “We analysed the climate models used in the [Intergovernmental Panel on Climate Change (IPCC)] Fifth Assessment Report, focusing on the projected impacts at 1.5°C and 2°C warming at the regional level. We considered 11 different indicators including extreme weather events, water availability, crop yields, coral reef degradation and sea-level rise.”


Evidence of coral bleaching around Tioman Island, Malaysia. This image is licensed under a Creative Commons Attribution-ShareAlike licence.

Paul via Flickr

The team, with researchers from Germany, Switzerland, Austria and the Netherlands, identified a number of hotspots around the globe where projected climate impacts at 2°C are significantly more severe than at 1.5°C. One of these is the Mediterranean region, which is already suffering from climate change-induced drying. With a global temperature increase of 1.5°C, the availability of fresh water in the region would be about 10% lower than in the late 20th century. In a 2°C world, the researchers project this reduction to double to about 20%.

In tropical regions, the half-a-degree difference in global temperature could have detrimental consequences for crop yields, particularly in Central America and West Africa. On average, local tropical maize and wheat yields would reduce twice as much at 2°C compared to a 1.5°C temperature increase.

Tropical regions would bear the brunt of the impacts of an additional 0.5°C of global warming by the end of the century, with warm spells lasting up to 50% longer in a 2°C world than at 1.5°C. “For heat-related extremes, the additional 0.5°C increase marks the difference between events at the upper limit of present-day natural variability and a new climate regime, particularly in tropical regions,” explains Schleussner.

The additional warming would also affect tropical coral reefs. Limiting warming to 1.5°C would provide a window of opportunity for some tropical coral reefs to adapt to climate change. In contrast, a 2°C temperature increase by 2100 would put virtually all of these ecosystems at risk of severe degradation due to coral bleaching.

On a global scale, the researchers anticipate sea level to rise about 50 cm by 2100 in a 2°C warmer world, 10 cm more than for 1.5°C warming. “Sea level rise will slow down during the 21st century only under a 1.5°C scenario,” explains Schleussner.

Co-author Jacob Schewe, of the Potsdam Institute for Climate Impact Research in Germany, says: “Some researchers have argued that there is little difference in climate change impacts between 1.5°C and 2°C. Indeed, it is necessary to account for natural variability, model uncertainties, and other factors that can obscure the picture. We did that in our study, and by focusing on key indicators at the regional level, we clearly show that there are significant differences in impacts between 1.5°C and 2°C.”

William Hare, a senior scientist and CEO at Climate Analytics who also took part in the Earth System Dynamics research, adds: “Our study shows that tropical regions – mostly developing countries that are already highly vulnerable to climate change – face the biggest rise in impacts between 1.5°C and 2°C.”

“Our results add to a growing body of evidence showing that climate risks occur at lower levels than previously thought. It provides scientific evidence to support the call by vulnerable countries, such as the Least Developed Countries and Small Island Developing States, that a 1.5°C warming limit would substantially reduce the impacts of climate change,” says Hare.


Please mention the name of the publication (Earth System Dynamics) if reporting on this story and, if reporting online, include a link to the paper (TBA) or to the journal website (http://www.earth-system-dynamics.net/).

See HTML version of this release, including accompanying images and the scientific study, at: http://www.egu.eu/news/230/15c-vs-2c-global-warming-new-study-shows-why-half-a-d....

INFORMATION FOR EDITORS

This research is presented in the paper ‘Differential climate impacts for policy-relevant limits to global warming: the case of 1.5 °C and 2 °C’ to appear in the EGU open access journal Earth System Dynamics on 21 April 2016. On the same day, the results will also be presented at the EGU General Assembly in Vienna.

The scientific article is available online, free of charge, from the publication date onwards, at http://www.earth-syst-dynam-discuss.net/esd-2015-68/ (this URL currently links to the non-peer-reviewed version of the paper, but will redirect to the page of the final, peer-reviewed paper after it is published). A pre-print version of the final paper is available for download at http://www.egu.eu/news/230/15c-vs-2c-global-warming-new-study-shows-why-half-a-d....

Citation: TBA

The team is composed of Carl-Friedrich Schleussner (Climate Analytics, Berlin, Germany [CA] and Potsdam Institute for Climate Impact Research, Potsdam, Germany [PIK]), Tabea K. Lissner (CA and PIK), Erich M. Fischer (Institute for Atmospheric and Climate Science, ETH Zurich, Switzerland [ETH]), Jan Wohland (PIK), Mahé Perrette (PIK), Antonius Golly (GFZ German Research Centre for Geosciences, Potsdam, Germany and University of Potsdam), Joeri Rogelj (ETH and International Institute for Applied Systems Analysis, Laxenburg, Austria), Katelin Childers (PIK), Jacob Schewe (PIK), Katja Frieler (PIK), Matthias Mengel (CA and PIK), William Hare (CA and PIK), and Michiel Schaeffer (CA and Wageningen University and Research Centre, Wageningen, The Netherlands).

ABOUT EGU

The European Geosciences Union (EGU) is Europe’s premier geosciences union, dedicated to the pursuit of excellence in the Earth, planetary, and space sciences for the benefit of humanity, worldwide. It is a non-profit interdisciplinary learned association of scientists founded in 2002. The EGU has a current portfolio of 17 diverse scientific journals, which use an innovative open access format, and organises a number of topical meetings, and education and outreach activities. Its annual General Assembly is the largest and most prominent European geosciences event, attracting over 11,000 scientists from all over the world. The meeting’s sessions cover a wide range of topics, including volcanology, planetary exploration, the Earth’s internal structure and atmosphere, climate, energy, and resources. The EGU 2016 General Assembly is taking place in Vienna, Austria, from 17 to 22 April 2016. For information about meeting and press registration, please check http://media.egu.eu or follow the EGU on Twitter and Facebook.

If you wish to receive our press releases via email, please use the Press Release Subscription Form at http://www.egu.eu/news/subscribe/. Subscribed journalists and other members of the media receive EGU press releases under embargo (if applicable) 24 hours in advance of public dissemination.

ABOUT THE JOURNAL

Earth System Dynamics (ESD) is an international scientific journal dedicated to the publication and public discussion of studies that take an interdisciplinary perspective of the functioning of the whole Earth system and global change. The overall behaviour of the Earth system is strongly shaped by the interactions among its various component systems, such as the atmosphere, cryosphere, hydrosphere, oceans, pedosphere, lithosphere, and the inner Earth, but also by life and human activity. ESD solicits contributions that investigate these various interactions and the underlying mechanisms, ways how these can be conceptualized, modelled, and quantified, predictions of the overall system behaviour to global changes, and the impacts for its habitability, humanity, and future Earth system management by human decision making.

CONTACTS

Carl-Friedrich Schleussner
Scientific Advisor at Climate Analytics
Berlin, Germany
Phone: +49-30-259-22-95-41
Email: carl.schleussner@climateanalytics.org

Jacob Schewe
Researcher at Potsdam Institute for Climate Impact Research
Potsdam, Germany
Phone: jacob.schewe@pik-potsdam.de
Email: +49-331-288-2421

William L. Hare
CEO and Managing Director / Senior Scientist at Climate Analytics
Berlin, Germany
Phone: +49-30-259-22-95-25 -or- +49-160-908-62463
Email: bill.hare@climateanalytics.org

Michiel Schaeffer
Director / Senior Scientist at Climate Analytics
Email: michiel.schaeffer@climateanalytics.org

Bárbara Ferreira
EGU Media and Communications Manager
Munich, Germany
Phone: +49-89-2180-6703
Email: media@egu.eu
EGU on Twitter: @EuroGeosciences

Weitere Informationen:

http://Scientific paper: TBA
http://www.earth-system-dynamics.net/: Journal – Earth System Dynamics
http://www.egu106.eu/ (general EGU General Assembly website); http://media.egu.eu (media website)
http://media.egu.eu/press-conferences/#COP21: press conference at the EGU 2016 General Assembly where the results will be presented
http://www.egu.eu/news/230/15c-vs-2c-global-warming-new-study-shows-why-half-a-d...

Dr. Bárbara Ferreira | European Geosciences Union

More articles from Earth Sciences:

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

nachricht Canadian glaciers now major contributor to sea level change, UCI study shows
15.02.2017 | University of California - Irvine

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>