Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New 'Thermometer' Helps Scientists Accurately Measure Rock Formation

02.03.2011
Finding to help determine geologic history of earth, meteorites

A University of Arkansas researcher and his colleagues have used magnesium isotopes to determine the temperature at which rocks form, which will allow scientists to better study the formation of the earth’s crust and mantle as well as the formation of meteorites.

Fang-Zhen Teng, professor of geosciences, and Wang-Ye Li, Yilin Xiao and Jian Huang of the University of Science and Technology of China report their findings in Earth and Planetary Science Letters.

“Knowing the temperature of rock formations is important to understanding the earth’s evolution,” Teng said. “We also can study extraterrestrial samples to know more about how meteorites formed and evolved.”

Of course, most rocks on earth have been rocks for millions and millions of years, making it difficult to determine their thermal history.

“We have to study the formation temperature of rocks indirectly,” Teng said. Several methods for doing so exist, but most do not give accurate readings at the high temperatures where rocks form. “How the temperature varies at depth within the earth’s crust and mantle is still uncertain,” Teng said.

The researchers studied magnesium isotope fractionation in eclogite, a metamorphic rock that contains the minerals omphacite and garnet, found in a mountain range in China. Eclogites form at high temperatures and pressures and often form from subducted ocean floor basalts that are drawn below the earth’s crust, and are brought to the surface during mountain-building processes.

Isotopes have the same chemical properties, but different weights, so some processes cause what looks like the same material to behave differently. In this case, the researchers looked at isotope fractionation, or the separation of isotopes into different areas within the rock. The magnesium isotope fractionation within a rock depends upon the temperature at which the atoms stopped moving within it, which is the time that the rock has formed.

The scientists found that the fractionation of magnesium isotopes is big at high temperatures, which allows researchers to then study it accurately. The researchers looked at other isotopes, but found the fractionation to be too small to measure precisely. The light magnesium isotopes move quickly to a low energy state (i.e., garnet), whereas the heavy isotopes prefer a high-energy state (i.e., omphacite). The proportion of light and heavy isotopes in each state in a given rock determines the temperature at which the rock formed. Using this magnesium isotope fractionation, the researchers can determine the temperature of rock formation to a higher precision. For example, if previous isotope “thermometers” only determined the temperature to a precision of within 50 degrees Celsius, then the magnesium thermometer can reach a precision of within 20 degrees Celsius.

By knowing the temperature of the rock formation, scientists will be able to determine the cooling rate of rocks at different depths within the earth’s crust and mantle. This will help them learn more about how the rocks cool down.

“This will help us determine how mountains were built. If we know the ‘cooking’ history, we can determine how fast the mountains were built and how the plates collide and evolve,” Teng said.

The researchers plan to collect samples from mountain building areas to further use this new tool.

CONTACTS:
Fang-Zhen Teng, assistant professor, geosciences
J. William Fulbright College of Arts and Science
479-575-4524, fteng@uark.edu
Melissa Lutz Blouin, director of science and research communications
University Relations
479-575-5555, blouin@uark.edu

Fang-Zhen Teng | Newswise Science News
Further information:
http://www.uark.edu

Further reports about: Helps accurately formation high temperatures measure

More articles from Earth Sciences:

nachricht Monitoring lava lake levels in Congo volcano
16.05.2018 | Seismological Society of America

nachricht Ice stream draining Greenland Ice Sheet sensitive to changes over past 45,000 years
14.05.2018 | Oregon State University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>