Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why 'singing' sand dunes hum certain notes

25.10.2012
What does Elvis Presley have in common with a sand dune?

No, it's not that people sometimes spot both in the vicinity of Las Vegas. Instead, some sand dunes, like The King, can sing. And new research looking for clues to how streams of sand can sing may explain why some dunes croon in more than one pitch at the same time.

Sand dunes only sing in a few areas across the globe, and their songs - always a low, droning sound -- have been an object of curiosity for centuries. Marco Polo encountered their haunting drone during his travels and Charles Darwin, in his book "The Voyage of the Beagle," wrote of testimonials from Chileans about the sound of a sandy hill they called the "bellower."

The song of the sands is a low hum at a frequency within the bottom half of a cello's musical range. These dunes only sing when the sand is sliding down their sides. People can set the sand in motion themselves or, more eerily, the wind can create sand avalanches, creating a sudden, booming chorus.

(To hear the dunes, go to: http://youtu.be/EzbGQXUL9vg)

Scientists previously thought the sound arose because avalanching sand created vibrations in the more stable underlayers of the dunes. But evidence that the avalanche of sand itself sings, not the dunes, emerged from experiments in 2009 by researchers who got a shallow pile of sand to sing while spilling down a laboratory incline. Now, the same research team has investigated a deeper mystery of the dunes -- how multiple notes can sound simultaneously from one dune.

To study this question, physicist Simon Dagois-Bohy and his fellow researchers at Paris Diderot University in France recorded two different dunes: one near Tarfaya, a port town in southwestern Morocco, and one near Al-Askharah, a coastal town in southeastern Oman. No matter where recordings were made near the Moroccan dune, the sands sang consistently at about 105 hertz, in the neighborhood of G-sharp two octaves below middle C. The Omani sands also sang powerfully, but sometimes unleashed a cacophony of almost every possible frequency from 90 to150 hertz, or about F-sharp to D, a range of nine notes.

The research will be published this Friday in the American Geophysical Union journal Geophysical Research Letters.

Even though the Omani dunes are somewhat sloppy singers, the researchers identified some tones that were slightly stronger than others. But with all the sand avalanching at once, those prominent frequencies were often buried in sea of notes. The scientists also observed that sand grains from the Omani dune came in a much wider range of sizes than their Moroccan counterparts. The Omani dune's grains were 150 to 310 microns, while the Moroccan dune's grains were only 150 to 170 microns.

So Dagois-Bohy and his colleagues brought grains from the Omani dune back to the lab. First, they ran the mix of the Omani sands down a constructed incline, recording its sound with microphones and measuring the sand's vibrations with sensors that floated on the surface. Then, they used a sieve to isolate the sand grains that were between 200 and 250 microns, and ran those sands down the same slope.

(To see a video of sand running down the slope in a lab, go to: http://youtu.be/_Rj6oSd3B0s)

The researchers then compared the sound of the isolated sands with the sound of the mixed-size control. They found that while the grains of a broad size range sang noisily, the sands of a narrow size range sang a clear note at about 90 hertz, much like the Moroccan sands do naturally. This suggested that grain size is an important factor in what tone the dunes sing, Dagois-Bohy said.

"The sound we hear is correlated to the size of the grains," he said. "So we can start to say that the size of the grains is important."

The research team suggests the grain size affects the purity of tones generated by the dunes. When grain size varies, the streams of sand flow at varied speeds, producing a wider range of notes. When the grains of sand are all about the same size, the streams of sand within the avalanche move at more consistent speeds, causing the sound to narrow in on specific tones. But scientists still don't know how the erratic motion of flowing grains translates into sounds

coherent enough to resemble musical notes, Dagois-Bohy said.

His team's hypothesis is that the vibrations of flowing sand grains synchronize, causing stretches of the sand grains to vibrate in unison. Their thousands of meager vibrations combine to push the air together, like the diaphragm of a loud speaker, Dagois-Bohy said. "But why do they synchronize with each other?" he noted. "That's still not resolved."

"The study attempts, and I think succeeds in many ways, to solve the problem of what's the mechanism" that translates tumbling sand into a song, said Tom Patitsas, a theoretical physicist at Laurentian University in Sudbury, Ontario, who did not participate in the study.

Patitsas said the theory behind the sound still requires more elaboration to explain why, for example, the flowing sand still needs a thin layer of stationary sand underneath it to make a sound. He suggests the sliding sands resonate with similar-sized grains beneath the avalanche. Those buried grains may lie in chain-like patterns that intensify the resonance. "Once you have this resonance, the amplitude of the vibration will be large," Patitsas said.

Notes for Journalists
Journalists and public information officers (PIOs) of educational and scientific institutions who have registered with AGU can download a PDF copy of this paper in press by clicking on this link:

http://www.agu.org/journals/pip/gl/2012GL052540-pip.pdf

After the paper publishes on Friday, 26 October, it will be accessible at:
http://dx.doi.org/10.1029/2012GL052540
Or, you may order a copy of the paper by emailing your request to Sean Treacy at streacy@agu.org. Please provide your name, the name of your publication, and your phone

number.

Neither the paper nor this press release is under embargo.

Title:
"Singing-sand avalanches without dunes"
Authors:
S. Dagois-Bohy, S. Courrech du Pont, and S. Douady: Laboratoire Matiere et Systemes Complexes, UMR 7057, CNRS, Universite Paris Diderot, Paris, France.
Contact information for the authors:
Simon Dagois-Bohy, +31 071 527 5517,
Email: dagois-bohy@lorentz.leidenuniv.nl

Sean Treacy | American Geophysical Union
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>