Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Missing' heat may affect future climate change

16.04.2010
Satellite instruments and ocean sensors are limited

Current observational tools cannot account for roughly half of the heat that is believed to have built up on Earth in recent years, according to a "Perspectives" article in this week's issue of the journal Science.

Scientists at the National Center for Atmospheric Research (NCAR) in Boulder, Colo., warn that satellite sensors, ocean floats, and other instruments are inadequate to track this "missing" heat, which may be building up in the deep oceans or elsewhere in the climate system.

"The heat will come back to haunt us sooner or later," says NCAR scientist Kevin Trenberth, the article's lead author.

"The reprieve we've had from warming temperatures in the last few years will not continue. It is critical to track the build-up of energy in our climate system so we can understand what is happening and predict our future climate."

The authors suggest that last year's rapid onset of El Niño, the periodic event in which upper ocean waters across much of the tropical Pacific Ocean become significantly warmer, may be one way in which the solar energy has reappeared.

The research was supported by the National Science Foundation (NSF), NCAR's sponsor, and by NASA.

"The flow of energy through the climate system is a key issue in understanding climate change," says Eric DeWeaver, program director in NSF's Division of Atmospheric and Geospace Sciences, which funds NCAR. "It poses a major challenge to our observing systems."

Trenberth and his co-author, NCAR scientist John Fasullo, focused on a central mystery of climate change.

Whereas satellite instruments indicate that greenhouse gases are continuing to trap more solar energy, or heat, scientists since 2003 have been unable to determine where much of that heat is going.

Either the satellite observations are incorrect, says Trenberth, or, more likely, large amounts of heat are penetrating to regions that are not adequately measured, such as the deepest parts of the oceans.

Compounding the problem, Earth's surface temperatures have largely leveled off in recent years. Yet melting glaciers and Arctic sea ice, along with rising sea levels, indicate that heat is continuing to have profound effects on the planet.

Trenberth and Fasullo explain that it is imperative to better measure the flow of energy through Earth's climate system.

For example, any geoengineering plan to artificially alter the world's climate to counter global warming could have inadvertent consequences, which may be difficult to analyze unless scientists can track heat around the globe.

Improved analysis of energy in the atmosphere and oceans can also help researchers better understand and possibly even anticipate unusual weather patterns, such as the cold outbreaks across much of the United States, Europe, and Asia over the past winter.

As greenhouse gases accumulate in the atmosphere, satellite instruments show a growing imbalance between energy entering the atmosphere from the sun and energy leaving from Earth's surface. This imbalance is the source of long-term global warming.

But tracking the growing amount of heat on Earth is far more complicated than measuring temperatures at the planet's surface.

The oceans absorb about 90 percent of the solar energy that is trapped by greenhouse gases. Additional amounts of heat go toward melting glaciers and sea ice, as well as warming the land and parts of the atmosphere.

Only a tiny fraction warms the air at the planet's surface.

Satellite measurements indicate that the amount of greenhouse-trapped solar energy has risen over recent years while the increase in heat measured in the top 3,000 feet of the ocean has stalled.

Although it is difficult to quantify the amount of solar energy with precision, Trenberth and Fasullo estimate that, based on satellite data, the amount of energy build-up appears to be about 1.0 watts per square meter or higher, while ocean instruments indicate a build-up of about 0.5 watts per square meter.

That means about half the total amount of heat is unaccounted for.

A percentage of the missing heat could be illusory, the result of imprecise measurements by satellites and surface sensors or incorrect processing of data from those sensors, the authors say.

Until 2003, the measured heat increase was consistent with computer model expectations. But a new set of ocean monitors since then has shown a steady decrease in the rate of oceanic heating, even as the satellite-measured imbalance between incoming and outgoing energy continues to grow.

Some of the missing heat appears to be going into the observed melting of ice sheets in Greenland and Antarctica, as well as Arctic sea ice.

Much of the missing heat may be in the ocean. Some heat increase can be detected between depths of 3,000 and 6,500 feet (about 1,000 to 2,000 meters), but more heat may be deeper still beyond the reach of ocean sensors.

Trenberth and Fasullo call for additional ocean sensors, along with more systematic data analysis and new approaches to calibrating satellite instruments, to help resolve the mystery.

The Argo profiling floats that researchers began deploying in 2000 to measure ocean temperatures, for example, are separated by about 185 miles (300 kilometers) and take readings only about once every 10 days from a depth of about 6,500 feet (2,000 meters) up to the surface.

Plans are underway to have a subset of these floats go to greater depths.

"Global warming at its heart is driven by an imbalance of energy: more solar energy is entering the atmosphere than leaving it," Fasullo says.

"Our concern is that we aren't able to entirely monitor or understand the imbalance. This reveals a glaring hole in our ability to observe the build-up of heat in our climate system."

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Earth Sciences:

nachricht Impacts of mass coral die-off on Indian Ocean reefs revealed
21.02.2017 | University of Exeter

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>