Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Fingerprinting' method reveals fate of mercury in Arctic snow

11.02.2010
A study by University of Michigan researchers offers new insight into what happens to mercury deposited onto Arctic snow from the atmosphere.

The work also provides a new approach to tracking mercury's movement through Arctic ecosystems.

Mercury is a naturally occurring element, but some 2000 tons of it enter the global environment each year from human-generated sources such as coal-burning power plants, incinerators and chlorine-producing plants.

"When released into the atmosphere in its reduced form, mercury is not very reactive. It can float around in the atmosphere as a gas for a year or more, and it's not really an environmental problem at the concentrations at which it occurs," said Joel Blum, the John D. MacArthur Professor of Geological Sciences.

But once mercury is oxidized, through a process that involves sunlight and often the element bromine, it becomes very reactive. Deposited onto land or into water, the mercury is picked up by microorganisms, which convert some of it to methylmercury, a highly toxic form that builds up in fish and the animals that eat them.

As bigger animals eat smaller ones, the methylmercury is concentrated. In wildlife, exposure to methylmercury can interfere with reproduction, growth, development and behavior and may even cause death. Effects on humans include damage to the central nervous system, heart and immune system. The developing brains of young and unborn children are especially vulnerable.

The research is described in a paper published online Feb. 7 in the journal Nature Geoscience.

In the Arctic, mercury remains in its benign gaseous form through the dark winter, because there's no sunlight to drive oxidation and little bromine to catalyze the process. But in polar springtime, that all changes. As sea ice breaks up, water vapor rises in great clouds through the openings in the ice, bringing with it bromine from the sea water. The bromine enters the atmosphere, where it conspires with sunlight to convert mercury gas into the reactive form. The activated mercury sticks to snowflakes and ice crystals in the air and travels with them onto the surface of the snow.

This leads to what's known as a mercury depletion event. The normally steady levels of mercury in the atmosphere quickly drop to near zero, as concentrations of mercury on the surface of the snow rise to extremely high levels.

"When we first started observing these events, we didn't know how much of that mercury returned back to the atmosphere, so the high level of mercury in snow was a great concern," Blum said. "But the more we learned, the more we realized that the sunlight shining on the snow typically will cause much of the oxidized mercury to become reduced and return to the atmosphere as a gas. And it turns out that its re-release to the atmosphere has a striking "fingerprint' that we can use to study the progress of this reaction through time."

The fingerprint is the result of a natural phenomenon called isotopic fractionation, in which different isotopes (atoms with different numbers of neutrons) of mercury react to form new compounds at slightly different rates. In one type of isotopic fractionation, mass-dependent fractionation (MDF), the differing rates depend on the masses of the isotopes. In mass-independent fractionation (MIF), the behavior of the isotopes depends not on their absolute masses but on whether their masses are odd or even.

In the work described in the Nature Geoscience paper, the researchers confirmed, through sample collection and experiments, that MIF occurs during the sunlight-driven reactions in snow, resulting in a characteristic MIF fingerprint that is absent in atmospheric mercury.

"This finding allowed us to use the MIF fingerprint to estimate how much mercury was lost from the snowpack and how much remained behind, with the potential to enter Arctic ecosystems," said U-M graduate student Laura Sherman, the paper's first author. "Our experiments showed that a significant portion of mercury deposited to snow was re-emitted. Any mercury that is not re-emitted is likely to retain the unique fingerprint, so we hope future researchers will be able to use our discovery to track mercury through Arctic ecosystems."

Sherman and Blum's coauthors on the paper are former U-M graduate student Kelsey Johnson; Gerald Keeler and James Barres of the U-M Air Quality Laboratory; and Thomas A. Douglas of the Cold Regions Research and Engineering Laboratory in Fort Wainwright, Alaska.

The research was funded by the National Science Foundation and the Office of Naval Research.

Nancy Ross-Flanigan | EurekAlert!
Further information:
http://www.umich.edu

More articles from Earth Sciences:

nachricht Heidelberg Researchers Study Unique Underwater Stalactites
24.11.2017 | Universität Heidelberg

nachricht Lightning, with a chance of antimatter
24.11.2017 | Kyoto University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>