Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

On 'Earth week,' world is no longer our oyster

21.04.2010
Acidifying oceans dramatically stunt growth of already threatened shellfish. The world is no longer our oyster.

As we prepare to celebrate Earth Day on April 22, we can add another species, one of widespread ecological and economic importance, to the list of the beleaguered.

From East Coast to West and around the world, global warming and its effects have descended upon shellfish reefs, particularly those formed by the Olympia oyster.

More than one-third of the world's human-caused carbon dioxide emissions have entered the oceans, according to Brian Gaylord, a biological oceanographer at the Bodega Marine Laboratory of the University of California at Davis.

"Similar to what happens in carbonated soda," says Gaylord, "increasing carbon dioxide in seawater makes it more acidic."

Even with small changes in acidity, seawater becomes corrosive to the shells of aquatic organisms.

That's not good news for most marine life, especially for oysters.

Gaylord is investigating the consequences of this increasing ocean acidity on the growth of larval and juvenile Olympia oysters native to the U.S. West Coast.

"Such early life stages can be extremely sensitive to environmental stresses like ocean acidification," says Gaylord.

"These stages operate as bottlenecks that drive overall population numbers. If larval and juvenile Olympia oysters decline as a result of an acidifying ocean, what does that mean for the species as a whole?"

Likely nothing good, he and colleagues say.

"Changes now happening in the ocean's chemistry are expected to continue far into the foreseeable future," says David Garrison, director of the National Science Foundation (NSF)'s biological oceanography program, which funds Gaylord's research. "They may have myriad effects on marine animals."

Gaylord conducted experiments on larvae and juveniles produced by adult oysters in Tomales Bay, California. Adults were collected in the bay, then held at the Bodega Marine Laboratory until they released larvae.

In the lab, the free-swimming larvae were reared into early juvenile life.

Carbon dioxide concentrations in laboratory seawater were controlled to match present-day conditions in the oceans, 380 parts per million (ppm), as well as two carbon dioxide scenarios projected to occur by the year 2100 (540 and 970 ppm).

Mid-way through the larval phase at day nine, oysters in the high carbon dioxide treatment had shells that were 16 percent smaller than those reared in control, or ambient, conditions.

These effects continued through the time the larval oysters settled onto hard substrate at day 12. Shell size was seven percent smaller for oysters in the 970 ppm treatment than in the control group.

By a week later, the effects were dramatically magnified. The bottom-dwelling juveniles in the 970 ppm treatment had grown 41 percent less than juveniles under control conditions.

The consequences persisted, even after the juveniles from all treatments had been returned to present-day conditions.

"One and a half months after being transferred back to normal seawater," says Gaylord, "juveniles that had come from the high carbon dioxide environment were still 28 percent smaller than oysters reared for the entire experiment in control conditions."

The results strongly suggest that the effects of ocean acidification on oyster larvae persist well into the juvenile phase, he says, with potential consequences for oyster populations.

"If similar impacts happen to species beyond the Olympia oyster, there could be repercussions for oysters around the world."

Globally, 85 percent of shellfish reefs have been lost, making oyster reefs one of the most severely threatened marine habitats on the planet.

"Shellfish reefs in some places are at less than 10 percent of their former abundance," says Garrison. "Oysters have gone extinct in many areas, especially in North America, Australia and Europe."

Just as coral reefs are critical to tropical marine habitats, shellfish like oysters are the ecosystem engineers of bays and estuaries, creating dwelling places for countless plants and animals that find refuge in their three-dimensional structure.

The surface area of an oyster bed across its dips and folds and crevices may be 50 times greater than that of an equally extensive flat mud bottom.

Shellfish reefs also provide important services to people by filtering water, and serving as natural coastal buffers from boat wakes, sea-level rise and storms.

Oysters have supported civilization for millennia, from the ancient Romans to railroad workers in California in the 1880s. In the 1870s, eastern oyster reefs extended for miles along the James River in Chesapeake Bay. By the 1940s, they had largely disappeared.

"It's unclear whether we will ever be able to return to that by-gone era," says Gaylord. "The constellation of environmental and other pressures on oysters--including the consequences of ocean acidification--places them at grave risk."

Gaylord and colleagues presented early results of their research at the Ocean Sciences Meeting in Portland, Oregon, in February. They plan to publish a paper with updated findings later this year.

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Earth Sciences:

nachricht Filling the gap: High-latitude volcanic eruptions also have global impact
20.11.2017 | Institute of Atmospheric Physics, Chinese Academy of Sciences

nachricht Antarctic landscape insights keep ice loss forecasts on the radar
20.11.2017 | University of Edinburgh

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>